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Abstract 

 
 We describe techniques that we are implementing to 

move inhomogeneous dynamical mean-field theory 

simulations from two- to three-dimensions.  Two-

dimensional simulations typically run on 2,000–10,000 

lattice sites, while three-dimensional simulations typically 

need to run on 1,000,000 or more lattice sites.  The 

inhomogeneous dynamical mean-field theory requires the 

diagonal of the inverse of many sparse matrices with the 

same sparsity pattern, and a dimension equal to the 

number of lattice-sites.  For two-dimensional systems, we 

have employed general dense LAPACK routines since the 

matrices are small enough.  For three-dimensional 

systems, we need to employ sparse matrix techniques.  

Here, we present one possible strategy for the sparse 

matrix routine, based on the well-known Lanczos 

technique, with a long run of the algorithm and (partial) 

reorthogonalization.  This approach is about two-times 

faster than the LAPACK routines with identical accuracy, 

and hence will become the standard we use on the two-

dimensional problems.  We illustrate this approach on the 

problem of increasing the efficiency for pre-forming 

dipolar molecules in K-Rb mixtures on a lattice.  We 

compare the local density approximation to 

inhomogeneous dynamical mean-field theory to illustrate 

how the local density approximation fails at low- 

temperature, and to illustrate the benefits of the new 

algorithms.  For a three-dimensional problem, a speed-up 

of 1,000 or more times is needed.  We end by discussing 

some options that are promising toward reaching this 

goal. 

 

1.  Introduction 

 
 Strongly correlated electron materials are some of the 

most interesting materials found in nature.  They are 

composed of electrons that interact so strongly with 

neighboring electrons (via the Coulomb repulsion) that 

the motion of each electron is correlated with the motion 

of all other ones (analogous to how one moves squares in 

a Rubik’s cube or in the so-called ―15‖ puzzle).  These 

materials have novel properties like high-temperature 

superconductivity, magnetism, metal insulator transitions, 

etc., and the properties can be tuned by varying the 

temperature, pressure, external electric  or magnetic field, 

and so on.  Hence, these materials have the potential for 

use in a wide range of important devices ranging from 

sensors, to ultra-fast digital electronics, and novel field 

effect devices.  Unfortunately, these systems require one 

to use quantum mechanics to describe the properties of 

these systems, and the quantum many-body problem is 

one of the most challenging problems to solve, as the 

Hilbert space grows exponentially with the number of 

particles, and rapidly becomes intractable.  Typically, we 

say these problems are NP, meaning that they are non- 

polynomial on a classical computer, but if one has the 

answer, it can be checked in polynomial time.  These 

problems should be QMA, which means they can be 

solved on a quantum computer. In the absence of having a 

general purpose ―digital‖ quantum computer, one is left 

with a range of different approximation techniques, which 

sometimes work, and sometimes fail. 

 In 1982, Richard Feynman (1982) suggested an 

alternative way to solve this problem by using an analog 

quantum computer.  He proposed that one set up a 



controlled quantum mechanical system that describes the 

problem of interest, and then one simply lets the system 

evolve forward in time, and reads off the results of the 

simulation via different experimental probes, similar to an 

analog computer.  At the time, there were no known 

systems to try to carry out this goal, but recently this has 

changed with new experiments on ultra-cold atomic 

systems in optical lattices.  Defense Advanced Research 

Projects Agency (DARPA) is running the optical lattice 

emulator program to build the first generation of these 

quantum analog simulators, Abo-Shaeer (2010).  In order 

to benchmark these simulators, one needs them to 

examine numerically-tractable problems which can be 

simulated on conventional computers, and verify that they 

produce the correct results.  Our Challenge Project 

involves performing these conventional numerical 

simulations. 

 These optical lattice emulators are constructed by 

placing ultra-cold clouds of alkali atoms in the egg-

carton-like potential energy surface created by two retro-

reflected laser beams, which have a lattice spacing that is 

typically about 0.5 microns.  Such, a lattice spacing is 

about one thousand times larger than the lattice spacing of 

real materials.  Nevertheless, the atoms which hop 

between lattice sites exhibit the same kind of quantum 

mechanical effects as electrons do in real materials.  

Hence, they are ideal for use as optical lattice emulators.  

The one complication that these systems possess is that 

the atoms need to be placed in a (harmonic) trap that 

holds them at a fixed-location in space.  The presence of 

the trap introduces an inhomogeneous potential in 

addition to the periodic lattice potential, which 

complicates their use as a simulator for electrons in real 

materials, which move on a lattice that has no trapping 

potential.  Disentangling the effects of the inhomogeneity 

from those of the lattice is one of the challenges we face 

in carrying the optical lattice emulator program to 

fruition. 

 Our numerical approach is based on dynamical mean-

field theory, which is a formal technique to solve the 

many-body problem which becomes exact in the limit of 

infinite number of spatial dimensions.  In two or three 

dimensions, the approach is necessarily approximate, but 

it is believed that the approximation is quite good for 

many systems, and this approach is the only numerically 

tractable method that can describe fermionic systems at 

low-temperature without facing the so-called sign 

problem.  We generalize the original formulation of 

dynamical mean-field theory to inhomogeneous systems 

(called IDMFT) to take into account the trap.  The 

approach works with objects called Green’s functions 

which, describe the amplitude and phase for creating a 

particle at one lattice site at time t1 and removing the 

particle from another lattice site at time t2.  The Green’s 

function can be parameterized by an object called the self-

energy, which describes how the energy of the excitations 

is modified by the interactions between the particles, and 

how long-lived they are.  The algorithm for solving 

IDMFT involves the following steps: 1) we start with a 

guess for the self-energy on each lattice site; 2) we 

calculate the local Green’s function by finding the 

diagonal of the inverse of a matrix (whose dimension is 

the number of lattice sites) which includes the self-energy 

and trapping potential for each lattice site on the diagonal, 

and the connections between neighboring lattice sites on 

the off-diagonal elements; 3) we extract the local effective 

medium by using Dyson’s equation to remove the local 

self-energy from the local Green’s function; 4) we solve a 

quantum impurity problem in the extracted dynamical 

mean-field for each lattice site to find the new local 

Green’s function; 5) we use Dyson’s equation with the 

new Green’s function and the old effective medium to 

find the new self-energy; and 6) we use the new self-

energy in step (2) to continue the iterative algorithm.  One 

repeats these steps until the functions have converged, 

which typically takes from 10 to 1,000 iterations.  The 

two numerically-intensive parts of the algorithm are 

finding the diagonal of the inverse of the large sparse-

matrix and solving the local impurity problem on each 

lattice-site.  The former problem grows as N3 with N the 

number of lattice sites, while the latter can range from 

being very-fast for some classes of models (like the 

Falicov-Kimball model studied here) to slow for more 

complicated quantum models (like the Hubbard model, 

which we plan to study in the near future), but grows 

linearly with the system size N.  Our focus in this paper is 

on describing how to improve the efficiency for 

calculating the diagonal of the inverse of a matrix, as the 

impurity solver part of the algorithm requires specialized 

knowledge and is an active research program within the 

many-body physics community. 

 

2.  Numerical Algorithms 

 
 Our initial algorithm described in Freericks (2009), 

uses conventional LAPACK and BLAS routines to solve 

the matrix inversion problem.  It is very efficient 

(achieving about 2 Gflops per CPU on the Cray XT5) and 

can scale up to at least 3,000 CPUs.  The efficiency 

derives primarily from the high-efficiency of the BLAS 

and LAPACK packages, which are highly portable and 

optimized for many different systems.  But dense matrix 

routines do not take into account the sparsity of these 

matrices.  In two-dimensional (2D) problems, one has at 

most 4 non-zero off-diagonal matrix elements for each 

row of the matrix that needs to be inverted, while for the 

three-dimensional (3D) system we have at most 6 non-

zero off-diagonal matrix elements.  This makes a 

100×100×100 lattice in three-dimensions have a fraction 



of 6/1,000,000 non-zero off-diagonal matrix elements, 

which is exceedingly sparse.  In addition, the sparsity 

pattern of the matrix is identical to the pattern one uses 

for a discrete approximation of the Laplacian operator, 

which often is employed in differential equation solvers.  

Hence, much work that has been devoted to those 

problems can be adapted to our problem. 

 We begin by describing how one can use the Lanczos 

algorithm to find the diagonal of the inverse of the 

matrices we work with in the IDMFT algorithm.  An 

efficient and accurate method for calculating the diagonal 

of the inverse of a symmetric (or even hermitian) N×N 

matrix, G-1, is based on the Lanczos algorithm, Lanczos 

(1950) and Parlett (1998).  The Lanczos algorithm uses a 

three-term recurrence to progressively reduce a real 

symmetric matrix into tridiagonal form.  At the jth step, 

where j does not exceed the dimension N of the matrix 

G−1, the algorithm produces an orthogonal basis q1, q2, …  

qj such that the representation of the original matrix G-1 

on the subspace represented by this basis is a tri-diagonal 

submatrix Tj.  Using, this basis and the representation Tj, 

one can then approximate the jth-element of the diagonal 

of the inverse matrix Gjj using a series of transformations 

briefly introduced below [see Sidje and Saad, (2008)].  

The process ends once the Lanczos algorithm reaches N 

(unless spatial symmetry operations are taken into 

account which allow us to equate the inverse matrix 

elements for symmetry equivalent lattice sites when there 

is no spontaneous symmetry breaking in the system and 

thereby terminate the algorithm with fewer steps), which 

then determines the entire diagonal of the inverse matrix.  

Once the algorithm reaches the full-dimension N of the 

matrix, the resulting diagonal of the inverse of G-1 is 

determined to high-precision (in practice, machine epsilon 

is reached).  Unfortunately, often it is required to use the 

full N steps and this means that a fairly large amount of 

memory might be required when the size of the matrix is 

large, due to additional reorthogonalization of the 

Lanczos vectors (see, for instance, the discussion in 

Parlett (1998) on re-orthogonalization for more details).  

A parallel out of core memory algorithm which uses 

efficient input/output protocols is being implemented for 

this purpose. 

 Within dynamical mean-field theory, the matrix 

G-1(ω) includes a contribution from the complex valued 

self-energy Σ(ω), on the diagonal plus a contribution also 

on the diagonal from the frequency, ω, that is either 

purely imaginary [a Matsubara frequency 

ω=iωn=iπT(2n+1)] or purely real (the real-time case 

using ω); the off-diagonal elements are those defined by 

the (real-valued) hopping matrix on a square lattice.  In 

other words, the inverse Green’s function G-1(ω) is 

neither real symmetric nor hermitian, as required by the 

Lanczos algorithm described above.  Note; however, that 

the complex part of the inverse Green’s function is only 

on its diagonal, i.e., we have G-1=S+iC, where S is real-

symmetric and C is a real-diagonal matrix that encodes 

the imaginary part.  Then the Green’s function can be 

reformulated using the above decomposition into the 

following form: G=C-1/2(R+iI)-1 C-1/2 with R=C-1/2 S C-1/2.  

The Lanczos tridiagonal matrix Tm can thus be built using 

the real-symmetric matrix R instead of the original 

complex-symmetric matrix G-1.  The diagonal of G is 

retrieved at the end of the Lanczos steps using the shift on 

the complex plane: Tm+iI (associated with R+iI, above), 

combined with an LDLT transformation of (Tm+iI).  

Explicitly, one has the transformation: 

   
11 1( )T T T

j j j j j j j jR iI Q T iI Q Q L D L Q
      

where Lj is a sub-diagonal matrix with ηj being its sub-

diagonal elements and with 1’s on its diagonal, while Dj is 

a diagonal matrix with elements δj on its diagonal, both at 

iteration j of the Lanczos procedure.  After some linear 

algebra based on the equation above, one finds the 

following algorithm for the diagonal of the inverse at 

iteration j of the Lanczos process: 
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 The αj’s and βj’s are respectively the diagonal and 

off-diagonal elements of the tridiagonal matrix Tj; the 

vectors q are the updated Lanczos vectors at iteration j 

and the vectors p are intermediary vectors solution of the 

system of equations Pj=Qj[Lj
T]-1 taken into account by the 

LDLT decomposition.   

 The algorithm above has been tested using both 

imaginary and real-time DMFT codes, for matrices up to 

N=71×71 and for temperatures as low as 0.025 t, with t 

being the hopping integral.  In every simulation, the 

Lanczos algorithm gives the same accuracy (of the order 

of 10-11) compared to direct dense solvers (i.e., LU-

decomposition plus inversion using a system of equations 

resolving U-1L-1) based on LAPACK routines.  The 

computing time of the Lanczos algorithm using partial- 

reorthogonalization [Lanczos (1950) and Parlett (1998)] is 

about 2–3 times faster than that of the direct method of 

LAPACK with the same accuracy.  Note that no loss of 

accuracy is observed between full- and partial-

reorthogonalization implementations of the Lanczos code. 

 

3.  Results 

 
 The problem that we have been examining recently is 

the problem of how to form dipolar molecules at ultra-

cold temperatures on 2D square lattices.  Dipolar 

molecules are of interest because they possess long-range 

forces, which could lead to interesting quantum states of 

matter (and perhaps even be used to make general-

purpose quantum computers).  There has been significant 



progress in experiments which begin by cooling mixtures 

of fermionic 40K and bosonic 87Rb atoms in a trap, Ni et 

al. (2008).  They can cool down to just above the Bose-

Einstein condensation temperature of the Rb atoms, 

because below that temperature, the Boson cloud shrinks, 

and becomes spatially separated from the Fermion cloud.  

Next, the magnetic field is swept through a Feshbach 

resonance, which binds the K and Rb atoms together into 

a weakly bound halo molecule.  Finally, a process called 

stimulated Raman adiabatic passage (STIRAP) is 

employed to coherently move the molecules from the 

excited state to the ground state without releasing any 

energy as heat.  The overall efficiency of this process is 

about 20%, due primarily to the poor overlap between the 

K and Rb atoms during the Feshbach sweep.  In a 

previous Challenge Project, Freericks et al. (2010), we 

showed how placing the atoms on an optical lattice (plus a 

trap) prior to doing the Feshbach sweep could increase the 

efficiency of dipolar molecule formation up to nearly 

100%.  The basic idea is that if we place the atoms on the 

lattice and tune the attractive interaction between the 

species, then we can achieve a situation with exactly one 

K and one Rb atom on each lattice site, which is perfectly 

primed for molecule formation via the Feshbach sweep. 

 Originally we ran our code in a Capability 

Applications Project (CAP) on the Cray XT% at Arctic 

Region Supercomputing Center (ARSC) (Pingo) and then 

completed it during our Challenge Project.  We calculated 

the efficiency versus the entropy per particle and found 

that reducing the entropy per particle down to about 0.75 

to 1 kB is sufficient to have a significant increase in the 

efficiency for forming dipolar molecules.  All of these 

runs took place with the LAPACK codes.  We have 

subsequently examined these codes with the new Lanczos 

algorithm, and on the imaginary axis, we have achieved 

nearly a factor of 2 speed-up, with identical accuracy.  

This approach will become our standard in the future for 

these two-dimensional problems. 

 The other project we have been working on is an 

interim project for the 3D systems which sidesteps the 

issue of needing the diagonal of the inverse of a large 

sparse matrix during the computational algorithm.  This 

approach is called the local density approximation, and 

just like how it is used in density functional theory, it 

assumes that we start with a system that is homogeneous, 

and we solve this system for a range of different chemical 

potentials at a fixed temperature.  Then we assume that 

the Green’s function on the i-th lattice site is determined 

by the homogeneous solution with a chemical potential 

given by the local chemical potential, equal to the 

chemical potential minus the trapping potential at site i.  

This approach never needs the diagonal of the inverse of a 

large matrix, because it does not use the Dyson equation 

on the inhomogeneous system, but uses the Dyson 

equation of the homogeneous system, which becomes 

diagonal in momentum space.  One of the problems with 

the local density approximation (LDA) is that if the 

homogeneous system has order, then it assumes the 

inhomogeneous system will also have order, at least for 

those sites where the chemical potential lies in the regime 

that is ordered in the bulk.  In general, one would expect 

the inhomogeneous system to order at a lower 

temperature as the coherence of that order is ―felt‖ over 

the inhomogeneous system.  Hence, we expect that the 

LDA will be an accurate approach at high temperature 

only.  In addition, the LDA assumes that the phases of the 

inhomogeneous system vary along contour lines given by 

equi-potentials of the trap potential, since that is how the 

local chemical potential varies.  Hence, this approach will 

not typically show any kind of faceting, which often can 

occur in inhomogeneous systems at low-temperature due 

to the underlying lattice structure. 

 The model that we examined was the spinless 

fermionic Falicov-Kimball model which has two types of 

particles—light particles which can hop to nearest 

neighbors and heavy particles, which cannot, Falicov and 

Kimball (1969).  When a light particle and a heavy 

particle sit on the same lattice site, they interact with an 

interaction U, which can be attractive or repulsive (we 

consider the repulsive interaction here).  We define the 

characteristic length of the trap to be equal to the length at 

which the trap potential energy is equal to the hopping 

integral.  Previously, we studied these systems on a 51×51 

lattice with characteristic lengths varying from 12.9 to 30 

lattice sites, Maska (2008).  We found, in those cases, that 

the density of the particles did not smoothly go to zero 

before we reached the edge of our system (where the trap 

potential can be viewed to jump to infinity).  So we now 

studied these systems on 101×101 size lattices, where the 

system, with 625 light and 625 heavy particles does fit 

nicely in the lattice for temperatures up to T=0.5t and the 

interaction U=5t.  We compared the solutions for the 

LDA to those of the IDMFT to see when the simplified 

approximation breaks down.  The LDA calculations are 

very fast for this model, and can be run on a laptop in a 

few minutes to an hour of CPU time.  The calculations 

with the IDMFT, typically take tens-of-thousands of CPU 

hours to complete a low temperature run, and are run on 

high performance computing (HPC) resources.  In 

Figure 1, we show a comparison of these two approaches 

at a temperature T=0.15t, where the system is close to, 

but has not yet ordered.  One can see that a radial density 

plot for the light (red) and heavy (black) particles is 

virtually indistinguishable for the LDA versus the 

IDMFT.  The pattern of the heavy particles, with the 

symbol size being proportional to the density on a given 

site, and the plots showing just the inner 50×50 section of 

the 101×101 lattice, is plotted in Figure 2.  They also 

agree very well between the two techniques (i.e., there is 

no faceting occurring yet). 



 
Figure 1. Radial density slices for the LDA (left) and IDMFT 
(right) at T=0.15t for a characteristic length of 12.9 for the 
light fermions and 30.0 for the heavy fermions.  The black 

curve is the density profile for the heavies, and the red curve 
is the density profile for the lights.  Note how the two curves 

appear to be virtually-identical. 

 
Figure 2. Density plots on the plane for the heavy particles.  
The symbol size is proportional to the density.  The LDA is 

on the left and the IDMFT is on the right.  The parameters are 
the same as in Figure 1.  Note the close agreement of the two 

images. 

 

 We next examine what happens at a lower- 

temperature, where the system begins to order.  We 

calculated results at the temperature T=0.05t, and the 

radial profiles are shown in Figure 3.  The oscillatory 

behavior in the LDA pictures is arising from the fact that 

the system shows some ordering in the bulk homogeneous 

system at those temperatures and densities, so the density 

profiles are not uniform anymore and can oscillate.  Note 

how the full solution with IDMFT remains smooth, even 

though the heavy and light particles are starting to avoid 

each other.  In Figure 4, we show the corresponding 

density profiles. 

 
Figure 3. Radial density profiles for T=0.05t and the same 

traps as before.  The LDA is on the left and the IDMFT is on 
the right.  Note the larger disagreement between these 

results now. 

 
Figure 4. Density plots at T=0.05.  The LDA is on the left and 
the IDMFT is on the right.  Note how the IDMFT profiles are 

rounder, thinner, and farther out.  The LDA solution appears 
to show some faceting effects, but this arises from the fact 
that the ordered phase on the edges is a period 2 density 
wave phase which has stripes along the diagonals, which 

give the effect of faceting. 

 

 Hence, one can see that the LDA works very well at 

temperatures above the ordering temperature, but it fails 

below.  We will be using this approach next when we 

examine the Hubbard model in three-dimensions.  Here, 

we will examine the LDA at high temperatures, with the 

confidence that it should agree with the IDMFT result, 

which needs to await newer algorithm development for 

fast sparse matrix algorithms to find the diagonal of the 

inverse of a matrix.  We also are working on a generalized 

gradient expansion correction to the LDA, which will 

allow for faceting, and might improve upon the 

calculation results without adding a significant load.  

Because the impurity solver for the Hubbard model 

requires significantly more time than the solver for the 

Falicov-Kimball model, even the LDA will require HPC 

resources to carry out the calculations in three- 

dimensions. 

 

4.  Other Algorithms 

 
 In addition to improving the performance and 

implementing parallel versions of the Lanczos algorithm 

applied to IDMFT, we are also investigating other 

approaches for an even higher speed-up.  For instance, we 

noticed that at sufficiently high temperatures (at least 2t 

and above) the inverse Green’s function in the imaginary 

time case is diagonally dominant, which implies that the 

Green’s function is sparse with its elements decaying 

rapidly away from the diagonal.  A probing method [Tang 

and Saad (2010)] using multi-coloring graph techniques 

was developed for this case.  The probing method applied 

to IDMFT is designed to evaluate the diagonal of the 

inverse of a matrix [as opposed to preconditioning 

methods where probing is used for estimating the inverse 

of the matrix, see Saad (2003)].  For diagonally dominant 

matrices a 10- to 100-fold improvement of computer 

speed can be obtained compared to the Lanczos approach.  

However, most of the matrices in IDMFT are indefinite 



(at low temperature) and the efficiency of the probing 

method remains slightly better than that of Lanczos for 

those indefinite cases. 

 The iterative solvers in the package ―ZITSOL‖, see, 

e.g., Osei-Kuffuor and Saad (2007), has been 

implemented and applied to the indefinite matrices at low 

temperature.  The algorithm leads to some improvements 

of the speed-up compared to Lanczos, for small matrices 

(N<712).  The algorithm is currently being tested on 

larger matrices.  Other algorithms are also being 

investigated such as a divide-and-conquer technique 

based on the standard Sherman-Morrisson formula, see 

e.g., Sherman and Morrison (1949) and Golub and Van 

Loan (1996).  Domain decomposition algorithms are also 

under development, as well as mixed methods which 

combine divide-and-conquer with the Lanczos-recurrence 

for the remaining term of the Sherman-Morrisson 

formula.  All of these algorithms are being developed for 

both the two- and three-dimensional cases.  Finally we 

will also examine techniques based on the super LU 

approach super LU, Demmel et al. (1999). 

 

5.  Significance to DoD 

 
 DARPA’s interest in this problem is to ultimately 

build a materials science emulator out of ultra-cold atomic 

atoms.  One can then hypothesize a particular material, 

program the emulator to simulate its properties, see if 

these properties are an improvement over currently 

known materials, and then devise a way to make the new 

materials with these targeted properties.  We are still far 

away from this goal, but have made much progress with 

being able to make simpler quantum many-body problem 

emulators in a variety of different platforms and for a 

variety of different models. 

 

6.  Conclusions 

 
 In this work, we have shown how one can improve 

the speed of the IDMFT algorithm by at least a factor-of- 

two, and how such speed-up is needed to examine 

realistic problems with fermions in three-dimensions.  We 

also showed that a conventional approximation, called the 

local density approximation, works remarkably well at 

high-temperatures, but fails as T is lowered.  Finally, we 

discussed a range of different techniques that we will try 

to implement to achieve even higher speed-ups so we can 

successfully simulate realistic three-dimensional systems 

that show Hubbard-model physics.  This latter project will 

be carried out over the next few years. 
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