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We calculate the finite temperature x-ray photoemission spectroscopy for the Falicov-Kimball model using a
Wiener-Hopf sum equation approach. In the metallic state, the core-hole spectral function shows two side peaks
corresponding to the creation of a core hole on an empty site (or a doubly occupied site) and also has two nearly
degenerate central peaks (because of our choice of the model parameters) corresponding to the creation of a core
hole on a singly occupied site. The nearly doubly degenerate central peaks merge into a single peak at higher
temperatures. In the insulating state, we obtain two peaks and a strongly temperature dependent low-energy peak
corresponding to the creation of a core hole on a thermally excited empty site. These results for the insulating
state should be similar to those of the more general Hubbard model. Also, the strong correlations suggest that
even without any additional broadening due to Auger-like processes, the core-hole lifetime will be short.
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I. INTRODUCTION

In a large class of x-ray spectroscopic techniques like
x-ray photoemission spectroscopy (XPS), x-ray absorption
spectroscopy (XAS) and resonant inelastic x-ray scattering
(RIXS) an incident high-energy x-ray photon (typically with
an energy ∼1–10 keV) knocks an electron out of a deep core
level state either out of the sample (XPS) or to an unoccu-
pied state in the conduction band (XAS and RIXS) thereby
creating a hole in the deep core level state. The conduction
band electrons then feel a local attractive static potential due
to the created core hole and the system relaxes to a new
orthogonal ground state through particle-hole excitations in
the conduction band. As a direct consequence of this many
body effect, the XAS and XPS show power-law divergences at
the threshold energy when T = 0. This phenomenon is known
as the orthogonality catastrophe, as proposed by Anderson [1].
For noninteracting metals at zero temperature, the exponent
of the power law and the relative intensity [2–4] of the XPS
spectra are well understood. At finite temperature, the power-
law singularity is cut off by the thermal fluctuations.

Much less is known about the fate of the power-law
divergence in the XPS spectra of strongly correlated met-
als and Mott insulators, although this question has been
examined by others [5–7]. The theory for strongly corre-
lated XPS can be applied to XPS studies of transition-metal
oxide compounds [8–11], which are either Mott insulators or
doped Mott insulators with interesting ground state magnetic
properties. Cornaglia and Georges [7] have studied core-level
photoemission spectra of the Hubbard model across the metal-
insulator transition. The calculated XPS spectra in the metallic
phase show an asymmetric power law divergence with an
exponent that depends on both the Hubbard interaction U and
the core-hole potential Q. With increasing U , the exponent
either vanishes continuously (when Q is less than half the

bandwidth) or remains nearly constant, but the weight under
the peak vanishes (when Q is more than half the bandwidth).
This study was limited to zero temperature so it is not able
to determine how the behavior changes as the temperature
is raised (except to note that an actual power-law divergence
only holds exactly at T = 0).

Recently, a number of x-ray free-electron lasers have
become available which either have, or promise soon to
have, revolutionary increases in brightness with narrow
pulse widths. Such experimental tools allow one to perform
pump/probe experiments with x rays. The x rays can act either
as a pump or as a probe, and our work here is related to the
case where they are employed as a probe. At long delay times,
we expect the excited electrons to be approximately described
by some form of hot electron model [12]. In this regime, the
signatures of an XPS signal will be similar to those of an
equilibrium system at high temperature. This is the problem
we study here. We find promising evidence that the satellite
features of the XPS signal can serve as in situ measures of
effective temperatures of the electron gas. If so, this probe can
have wide applicability for pump/probe experiments that have
access to x-ray probes.

We study the temperature dependence of core-hole spectral
function in the Falicov-Kimball (FK) model [13], which is
also the XPS spectral function because the core-hole level is
so far below the Fermi level. The FK-model can be thought
of as a special case of the more general Hubbard model in
which one of the spin species (say the down spins) is static,
while the other spin species (say the up spins) hop through
the annealed background of the static spin species with a
nearest-neighbor hopping amplitude t . When two electrons of
opposite spin are on the same lattice site, they interact with a
Coulomb interaction U . Despite its simplicity, the FK-model
has a metal-insulator transition for large Coulomb repulsion
U >Uc and is exactly solvable via dynamical mean-field
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theory (DMFT) [14,15]. The local propagator for the itinerant
species can be calculated exactly while the propagator for the
static species can be calculated systematically by using nu-
merical renormalization group [16–24] (NRG) or the Wiener-
Hopf sum equation approach [25–30] (at finite temperature).
The most notable difference between the two models is that
the metallic state of the FK model is a non-Fermi liquid [31],
while the metallic state in the Hubbard model is a Fermi
liquid. The insulating state in both models has the same
origin and the charge dynamics in the incompressible Mott
insulating state is similar. This relationship between the two
models in the insulating phase has been illustrated in studies
of nonresonant Raman scattering [32,33].

We note that this work focuses on the Falicov-Kimball
model with an extra core hole. It shares much similarity
with the simpler problem of the f -spectral function for the
Falicov-Kimball model, where it was recognized early on that
x-ray edge physics plays a role [31]. The problem was solved
by Brandt and Urbanek [34], whose method was extended
and generalized to the Wiener-Hopf approach. The numerical
renormalization group was also applied to this problem [20]
and shown to be an excellent tool for determining the expo-
nent of the edge singularity in the metallic phase. For high-
temperature physics, the Wiener-Hopf approach used here
is superior. The organization of the rest of the paper is as
follows; In Sec. II, we introduce the core-hole problem, in
Sec. III we introduce a mathematical formulation for calcula-
tion of the real time Green’s function. In Sec. IV, we study
the core-hole spectral function using the Wiener-Hopf sum
equation approach and finally, in Sec. V, we conclude.

II. CORE-HOLE PROBLEM IN THE
FALICOV-KIMBALL MODEL

The Falicov-Kimball [13] was originally proposed as a
model for rare-earth compounds near a metal-insulator tran-
sition. It involves the interaction between mobile conduction
d electrons and the static localized f electrons. The model
can be applied to real rare earth compounds in an approxi-
mate way (in the incoherent high temperature region) [35].
The Hamiltonian for the Falicov-Kimball model (in the hole
representation, with an additional core hole) is given by

H = − t∗

2
√

D

∑
〈i j〉

d†
i d j −

∑
i

μndi +
∑

i

(E f − μ)n f i

+
∑

i

(Eh − μ)nhi +
∑

i

Undin f i +
∑

i

Qd ndinhi

+
∑

i

Q f n f inhi, (1)

where t∗/2
√

D is the nearest-neighbor-hopping amplitude of
the itinerant d holes on a D-dimensional hypercubic lattice
and μ is the common chemical potential (we take the limit
D → ∞ and use t∗ as our energy unit). The symbols ndi =
d†

i di, n f i = f †
i fi and nhi = h†

i hi are the occupation number
operators for the d , f , and the core holes at a given site i,
respectively. U is the on-site repulsive Coulomb interaction
between the itinerant d hole and static f hole, whereas Qd

and Q f are the repulsive Coulomb interactions between the

core hole and the d and f holes, respectively. E f ∼ 1 eV
and Eh ∼ 0.1–10 keV are the site energies of the f state
and the core-hole state, respectively. The case of half-filling
(n f = nd = 0.5) corresponds to the choice of μ = U/2 and
E f = −U/2; this is the particle-hole symmetric case (in the
restricted subspace involving d and f electrons only). Also,
under a partial hole-particle transformation d → d† and f →
f †, the interaction between the core hole and the d and f states
transforms as Qd → −Qd and Q f → −Q f , respectively, i.e.,
becomes attractive instead and the core-hole energy Eh gets
shifted to Eh + Qd + Q f .

Under DMFT, the model reduces to an effective
single-impurity problem, described by the following local
Hamiltonian:

Hloc = Und n f + Qd nd nh + Q f n f nh − μnn

+ (E f − μ)n f + (Eh − μ)nh (2)

along with an effective time-dependent bath (arising from the
degrees of freedom at all other sites except the site chosen)
to which the d holes hop in and out. The equilibrium density
matrix for the single-impurity problem is given by

ρ = ρlocTc exp

{
−i

∫
c

dt ′
∫

c
dt ′′d†(t ′)λc(t ′, t ′′)d (t ′′)

}
, (3)

where ρloc = e−βHloc/Z , Z is the partition function (including
the effects of the dynamical mean field), β = 1/kBT is the
inverse temperature and the time-ordering and integration are
performed over the Kadanoff-Baym-Keldysh [36,37] contour
in Fig. 1. The time dependence of the operators in Eq. (3) are
given by the interaction representation with respect to Hloc.

The time-translation noninvariant dynamical mean field
λc(t, t ′) is given by

λc(t, t ′) = − i

π

∫ +∞

−∞
dω Im[λ(ω)]eiω(t ′−t )[ f (ω) − �c(t, t ′)],

(4)

where f (ω) = 1/[1 + exp(βω)] is the Fermi-Dirac distribu-
tion function and �c(t, t ′) is the Heaviside function on the
contour which is equal to 1 when t is ahead of t ′ on the
contour, is equal to 0 when t is behind t ′ and is equal to
1/2 when t = t ′. Note that the dynamical mean field λ(ω)
and the chemical potential μ are obtained from the equilib-
rium solution of the impurity problem without the core hole.
This in effect means that we are treating the creation of the
core hole under the sudden approximation instead of a fully
self-consistent nonequilibrium treatment. The creation of the

FIG. 1. The Kadanoff-Baym-Keldysh contour. The contour starts
at time t = 0, moves forward in time along the real axis to time t ,
then moves backward in time along the real axis to time t = 0, and
finally moves downwards along the imaginary axis to time −iβ.
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core hole under the sudden approximation is commonly done
because it is consistent with experiments.

Because of the conserved core-hole number nh and the con-
served f -hole number n f , the full Hilbert space of the core-
hole problem can be expressed as the direct sum of the Hilbert
spaces in each conserved {nh, n f } sector. For the spinless case,
the total partition function for the single-impurity problem Z
contains four terms Zα ≡ Znhn f , each of which corresponds
to the partition function for the Hilbert space in the conserved
{nh, n f } sector. We have

Z = Z00 + Z01 + e−β(Eh−μ)[Z10 + Z11] (5)

with

Z00 = (1 + eβμ)
∏

m

iωm + μ − λm

iωm + μ
, (6)

Z01 = eβ(μ−E f )[1 + eβ(μ−U )]
∏

m

iωm + μ − U − λm

iωm + μ − U
, (7)

Z10 = [1 + eβ(μ−Qd )]
∏

m

iωm + μ − Qd − λm

iωm + μ − Qd
, (8)

Z11 = eβ(μ−E f −Q f )[1 + eβ(μ−U−Qd )]

×
∏

m

iωm + μ − U − Qd − λm

iωm + μ − U − Qd
, (9)

where iωm = iπ (2m + 1)kBT is the fermionic Matsubara fre-
quency and

λm =
∫ β

0
dτ eiωmτ λ(τ ) (10)

is the dynamical mean field evaluated at iωm. The contour-
ordered dynamical mean field λc depends on the difference of
its two time arguments when both of them lie on the imaginary
time axis of the Kadanoff-Baym-Keldysh contour; we also use
the notation λ(τ ) = −iλc(−iτ, 0).

III. REAL TIME GREEN’S FUNCTIONS

We define the contour-ordered Green’s function for the
core hole as

Gc
h(t, t ′) = −i〈Tc h(t )h†(t ′)〉, (11)

where the time ordering is taken along the Kadanoff-
Baym-Keldysh contour shown in Fig. 1 and 〈· · · 〉 corre-
sponds to the trace weighted by the equilibrium density
matrix in Eq. (3). We also define the greater Green’s func-
tion G>(t, t ′) = −i〈h(t )h†(t ′)〉 and lesser Green’s function
G<(t, t ′) = i〈h†(t ′)h(t )〉, which can all be expressed via

G>(t, t ′) = − i

Z
∑
m,n

e−βEm |〈m|h|n〉|2ei(Em−En )(t−t ′ ), (12)

G<(t, t ′) = i

Z
∑
m,n

e−βEn |〈n|h†|m〉|2ei(Em−En )(t−t ′ ). (13)

in the eigenbasis of the lattice Falicov-Kimball Hamiltonian
with the additional core hole in Eq. (1); the eigenstates satisfy
H|n〉 = En|n〉. Note that we have suppressed the lattice site
index in these equations, since the core-hole propagator is
independent of the lattice site, but is always local, implying

that the two hole creation and destruction operators must be
from the same lattice site. Out of these two Green’s functions
we can construct retarded and advanced Green’s functions,

Gr
h(t, t ′) = −i�(t − t ′)〈[h(t ), h†(t ′)]+〉

= �(t − t ′)[G>
h (t, t ′) − G<

h (t, t ′)], (14)

Ga
h(t, t ′) = i�(t ′ − t )〈[h(t ), h†(t ′)]+〉

= �(t ′ − t )[G<
h (t, t ′) − G>

h (t, t ′)], (15)

respectively. The symbol [A, B]+ = AB + BA represents the
anticommutator.

Equilibrium problems are time-translation invariant, be-
cause there is no preferred time. This is a property shared by
the Green’s functions, which follows by cyclic invariance of
the trace and the fact that the lattice Hamiltonian commutes
with itself. Hence, all of the Green’s functions discussed
here are functions only of t − t ′. Furthermore, by relating
the complex conjugate of a matrix element, to the Hermitian
conjugate of the operators in the matrix element, we can also
show that

[G>
h (t )]∗ = −G>

h (−t ), [G<
h (t )]∗ = −G<

h (−t ). (16)

The core-hole spectral function Ah(ω) is then determined from

Ah(ω) = − 1

π
Im

[
Gr

h(ω + i0+)
]
. (17)

In many cases, one can directly perform an analytic con-
tinuation from Matsubara frequencies to real frequencies, but
there is no obvious way to do that here [27,28,34]. Instead,
one can always formulate the problem on the Kadanoff-Baym-
Keldysh contour, and directly determine the Green’s function
as a function of time. It can then be Fourier transformed to fre-
quency. This is the approach we adopt here. Furthermore, for
most core level states involving atomic 1s and 2p orbitals, the
core-hole energy is large Eh � 0 (Eh ∼ 600 eV). In this limit,
the presence of the thermal factor given by exp[−β(Eh − μ)],
completely suppresses the lesser Green’s function, which we
can approximate by zero. Hence, we have that the greater
Green’s function is identical to the retarded Green’s function
in this limit, namely Gr

h(t ) = �(t )G>
h (t ). So we only need to

compute

G>
h (t ) = −iTr

[
Tc exp

{
−i

∫
c
dt ′

∫
c
dt ′′d†(t ′)λc(t ′, t ′′)d (t ′′)

}

× h(t )h†(0)ρloc

]
, (18)

for t � 0.
We begin by solving the equations of motion for the core-

hole operators, given by

dh(t )

dt
= −i[Qd nd (t ) + Q f n f (t ) + Eh − μ]h(t ), (19)

dh†(t̄ )

dt̄
= i[Qd nd (t̄ ) + Q f n f (t̄ ) + Eh − μ]h†(t̄ ), (20)

and substitute their solutions into Eq. (18), yielding

G>
h (t ) = −ie−i(Eh−μ)t Tr[e−βH0 e−iQ f n f t Sc(t )h(0)h†(0)], (21)
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where

Sc(t ) = Tc exp

{
−i

∫
c

dt ′
∫

c
dt ′′d†(t ′)λc(t ′, t ′′)d (t ′′)

− i
∫

c
dt ′Qc(t, t ′)nd (t ′)

}
, (22)

with Qc(t, t ′) = Qd for t ′ ∈ [0, t] on the upper branch of the
contour only and zero otherwise. It is due to the lack of
time translation invariance of the Qc(t, t ′) field that we must
use the Kadanoff-Baym-Keldysh formalism for the analytic
continuation. Note, however, that the final Green’s function
will remain time-translation invariant.

Since the core-hole occupation number nh = h†h is con-
served, we have a projection onto states without a core hole
(nh = 0) only. Furthermore, since n f is also conserved, we
add together the contributions for n f = 0 (top line) and n f = 1
(bottom line). This results in

G>
h (t ) = − i

Z e−i(Eh−μ)t Tr [eβμndSc(t )]

− i

Z e−i(Eh−μ)t e−β(E f −μ)e−iQ f t Tr [eβ(μ−U )ndSc(t )],

(23)

where the trace is now over the d holes only.
The evaluation of the remaining traces is straightforward,

because the actions are quadratic in the d electrons. However,
the steps one needs to follow are a bit involved. Following
the methodology employed in the calculation of the f -particle
propagator [29], we compute the solution in terms of the
functional determinants

G>
h (t ) = −ie−i(Eh−μ)t

[Z00

Z det[0,t](I − Qd G00)

+ Z01

Z e−iQ f t det[0,t](I − Qd G01)

]
, (24)

where the continuous matrix elements of the Green’s func-
tions G00 and G01 in the determinants are the causal (time-
ordered) Green’s functions

Gnh,n f (t ′, t ′′) = − i

π

∫ +∞

−∞
dωe−iω(t ′−t ′′ ) Im Gnh,n f (ω)

× [ f (ω) − �(t ′ − t ′′)] (25)

defined through the retarded one

Gnh,n f (ω) = 1

ω + iδ − εnhn f − λ(ω + iδ)
(26)

with the Fourier transform

Gnh,n f (ω) = ReGnh,n f (ω) + i tanh
βω

2
Im Gnh,n f (ω). (27)

Here the local energies εnhn f are equal ε00 = −μ, ε01 =
U − μ, ε10 = Qd − μ, and ε11 = U + Qd − μ and the step
function �(t ′ − t ′′) must be defined as 1 for t ′ > t ′′ and 0 for
t ′ � t ′′ [at equal time values, we must have the lesser Green’s
function with �(0) = 0, which produces ind (t ′) in Eq. (22),
whereas for other frequently used definitions �(0) = 1 and
1/2, we would mistakenly obtain i(nd (t ′) − 1) and i(nd (t ′) −
0.5), respectively]. Note that the determinants in Eq. (24)

are continuous matrix determinants over finite time intervals
ranging from 0 to t and we must recall that the identity matrix
is given by a delta function in the time domain.

The continuous time determinants are in the Toeplitz form
because the Green’s function Gnh,n f (t1, t2) = Gnh,n f (t1 − t2)
depends only on the difference of the two time arguments.
Asymptotic limits (t → ∞) of Toeplitz determinants can be
easily calculated by using the Wiener-Hopf sum equation
approach and Szegö’s theorem [25]. Two of us have also
developed systematic finite-time corrections to these asymp-
totic forms [29,30] and found that the form of the large-time
behavior is determined by the winding number of the matrices
in Eq. (24), which depends on the analytic properties of the
logarithm of the characteristic function

Cnh,n f (ω)=1 − Qd Gnh,n f (ω)

=1− Qd ReGnh,n f (ω) − iQd tanh
βω

2
Im Gnh,n f (ω).

(28)

The imaginary part of this function changes sign at ω = 0
and, depending on the sign of its real part, the logarithm
of Cnh,n f (ω) is either a monotonic function or possesses a
discontinuity equal to 2π i at ω = 0. In the first case, where
Re Cnh,n f (ω = 0) > 0, the winding number of the correspond-
ing matrix is equal to zero and the large time asymptotic
behavior of the determinant is exponential, giving rise to
Lorentzian XPS peak profiles. On the other hand, for the case
where Re Cnh,n f (ω = 0) < 0, the winding number is equal to
−1 and the determinants decay to zero much faster at large
times producing nontrivial XPS peak profiles.

For the case of the half-filled Falicov-Kimball model with
a symmetric conduction-electron DOS, we have μ = U/2,
ε00 = −U/2, ε01 = U/2, and Re λ(0) = 0, which yields

Re C00(0) = 1 − Qd U/2

(U/2)2 + (Im λ(0))2 ,

Re C01(0) = 1 + Qd U/2

(U/2)2 + (Im λ(0))2 > 0. (29)

It should be noted that, Im λ(0) is connected with the imag-
inary part of the self-energy via Im �(0) = U 2/4 Im λ(0),
which also determines the lifetime of the single-particle ex-
citations at the chemical potential. One can see that Re C01(0)
is always positive which means that the winding number for
the second determinant in Eq. (24) is zero and it always
decays exponentially for large times. The behavior of the first
determinant depends on the Qd value. For Qd < Qdc, where

Qdc = U

2
+ 2(Im λ(0))2

U
, (30)

Re C01(0) is also positive and we have exponential decay at
large times, whereas for Qd > Qdc, Re C01(0) is negative and
the asymptotic behavior of the first determinant is nonexpo-
nential; instead it decays much faster at large times. It should
be noted, that for the Mott insulator with Im λ(0) = 0, we
have Qdc = U/2.1

1A similar analysis of the f -particle propagator gives an equation
for the critical U : U/2 = − Im λ(0) with solution U0 = 0.8655
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While we are not explicitly interested in what happens as
T → 0, in this work, one would likely find that the exponen-
tial decay in time is modified to a power-law decay when the
winding number is zero. When this occurs, it will give rise
to edge singularities in the spectrum, which are rigorously
present only at T = 0. The fact that the winding number
becomes −1 in the “dirty” metallic phase (with nonzero U ),
indicates that one can lose edge singularities even in metallic
systems if the core-hole interaction strength is large enough.

The finite time Toeplitz determinants can also be calculated
through a discretization of the continuous matrix operators
and a numerical integration over the Kadanoff-Baym-Keldysh
contour. This latter method is found to be accurate in the small
time region but becomes numerically intractable in the large
time region because of the large matrices involved (due to the
use of a fixed step size in time). We adopt a hybrid approach
in which we use direct numerical evaluation of the Toeplitz
determinants in the small time region and use Szegö’s theorem
and its finite time corrections to calculate the determinants in
the large time region. This approach produces accurate real
time Green’s functions for all times.

IV. CORE-HOLE SPECTRAL FUNCTION

We choose the familiar half-filling case which corresponds
to 〈nd〉 = 〈n f 〉 = 0.5 and μ = U/2 in the absence of the core
hole and as already mentioned we treat the creation of the
core hole under the sudden approximation, i.e., the creation of
the core hole does not modify the dynamics of the itinerant
d hole or static f hole. We also choose the hypercubic
lattice, which in the limit of large dimensions (D → ∞) has a
Gaussian density of states

D0(ε) = 1√
π

exp (−ε2), (31)

where we set t∗ = 1. In the absence of the core hole, the
Falicov-Kimball model has a Mott insulating ground state
for U > Uc = √

2, when spatial ordering is suppressed. The
core-hole spectral function Ah(ω) is also the XPS response
function in the deep core-hole limit. We study the evolution of
Ah(ω) for various temperatures T , interaction strengths U , and
core-hole potentials Qd and Q f , keeping Qd = Q f to reduce
the number of parameters.

A. Weakly correlated metal

We first consider the case of a weakly correlated metal
with U = 0.5. As shown in Fig. 3(a), the conduction electron
spectral function Ad (ω) has a metallic density of states, with
no gap. In Figs. 3(b) and 3(c), we show the temperature
evolution of the core-hole spectral function for small Qd =
Q f = 1.0 and large Qd = Q f = 5.0 core-hole potentials. The
term small and large is with respect to U .

for the Gaussian DOS [29], whereas for the Bethe lattice with a
semicircular DOS, we have U0 = W/

√
2 and Qdc = W 2/2U for the

metallic phase with U < W and Qdc = U/2 for the Mott insulator
with U > W .

Ah(ω) in Fig. 3(b) shows two distinct peaks and a very
broad hump whereas in Fig. 3(c) we clearly see three dis-
tinct peaks. The peak structure can be easily understood
from the atomic limit picture. Using the equation of motion,
we can calculate the retarded core-hole Green’s function as
Ĝr

h(ω) = (ω + iη − Eh + μ − Qd n̂d − Q f n̂ f )−1, where one
needs to insert the localized hole fillings for each sector. So, if
we plot Ah(ω) as a function of ω − Eh + μ, then we will see
two delta function peaks at 0 and Qd for n f = 0 and two delta
function peaks at Q f and Qd + Q f for n f = 1. Because of
the choice Qd = Q f through out the calculation the two peak
positions at Qd and Q f are degenerate. Note that the distance
between two peaks in each of the conserved n f sectors is Qd .
Now once we couple the local Hamiltonian to the dynamical
mean field, then each of the delta function peaks gets broad-
ened due to finite lifetime of the atomic levels. Also, their
peak position is shifted too. Most interestingly, the distance
between the two peaks in each of the conserved n f sectors
still remains equal to ∼Qd . This is due to the fact that the
core-hole–d-hole interaction shifts each of the d-hole levels
by the same amount, namely, ∼Qd .

In Fig. 3(b), the peak near � ≡ ω − Eh + μ = 0 corre-
sponds to the core hole being created on a site not occupied by
either a d or f hole. Whereas the peak at � 
 1.0 corresponds
to a nearly degenerate double peak, where the core hole is
created on a site either occupied by a d or f hole. The broad
shoulder at � 
 2.0 corresponds to the case where the core
hole is created on a site doubly occupied by both d and
f holes. With increasing core-hole potentials Qd = Q f , the
doubly degenerate central peak gets split as shown in the
inset of Fig. 3(c). This is due to the fact that local d holes
directly hybridize with the bath which shifts its energy and
width, whereas the f hole only indirectly sees the fluctuating
bath through its interaction with the local d hole; therefore,
it has different self-energy effects when compared to the d
hole. Thermal broadening again smears the two peaks and we
obtain one broad central peak at high temperature (T = 0.3).

The integrated spectral weight under the central peak is
much larger than that of the other two peaks. This corresponds
to the fact that at half filling the excited core hole would
more probably be created at singly occupied sites rather
than at unoccupied or doubly occupied sites. With increasing
temperature the integrated weight under the two side peaks
increases and that under the central peak decreases. This is
because thermally excited sites create a pair of empty and
doubly occupied sites at the expense of two singly occupied
sites so the probability that the excited core hole will be
created at one of those sites increases with temperature.

In Fig. 3(d), we show the systematic evolution of Ah(ω) at
a fixed temperature T = 0.1 for various core-hole potentials.
The main feature is that the peaks corresponding to the
excitation of the core hole onto singly or doubly occupied sites
shifts farther and farther from the edge peak. It also appears
that peaks are losing intensity, but since the integrated spectral
weight is always equal to one, this is just an illusion—the
change in peak heights is compensated by a change in their
width.

One may ask, where is the edge singularity? In spite of the
fact that for U = 0.5 we are in the metallic phase, the shape of
the peaks is different depending on the Qd value and whether
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FIG. 2. Critical core-hole potential Qdc for different Coulomb
interactions U (black solid line). Note that the Mott phase appears
for U >

√
2, as indicated by the dashed line; the core-hole potential

chosen in this work is always larger than U . This implies that we
often have winding number of −1.

we are above or below the curve in Fig. 2. For Qd = 1, we
are below the curve, Qd < Qdc, and for both contributions
in Eq. (24) we observe sharp edge singularity peaks. As
the temperature is lowered, one of the peaks becomes very
sharp with a high amplitude and eventually it gives rise to a
divergent signal with the power-law divergence occurring at
T = 0 [30]. For the larger Qd values in Fig. 3(d), we are above

FIG. 3. (a) Itinerant species spectral function, Ad (ω). [(b) and
(c)] Temperature dependence of the core-hole spectral function,
Ah(ω), for small (Qd = Qf = 1.0) and large (Qd = Qf = 5.0) core-
hole potentials. (c) Blown up region near the central peak. Axis
labels are the same as in the main panel. (d) Evolution of Ah(ω)
for various core-hole potentials Qd = Qf for a given temperature
T = 0.1. Parameters used for the calculations are all indicated in the
figures.

FIG. 4. (a) Conduction-electron spectral function with its
pseudo-gap structure. (b) and (c) Temperature dependence of the
core-hole spectral function for moderate (Qd = Qf = 1.5) and large
(Qd = Qf = 5.0) core-hole potentials. (d) Evolution of the core-hole
spectral function for various core-hole potentials Qd = Qf at a fixed
temperature T = 0.1. The parameters used for the calculations are
all indicated in the figures.

the curve in Fig. 2, Qd > Qdc, and the low-energy edge peak
becomes smooth without displaying any singularity features,
whereas the high energy one still does. It is a joint effect of
the Coulomb interaction U and the core-hole potential Qd ,
which suppresses the edge singularity. This feature is not
noticed in previous publications on the edge singularity either
because it does not occur for a pure metallic case with U =
0 [2–4] or because of an approximate treatment of the electron
correlations, which misses this effect. We can see that the edge
singularity clearly disappears at nonzero temperature. Our
focus here is on how this behavior changes at higher tempera-
tures, and we can see that the behavior dramatically changes.

B. Strongly correlated metal

Next, we consider the case of a strongly correlated metal.
We choose U = 1.0. The conduction-electron density of states
Ad (ω), is shown in Fig. 4(a), and illustrates a pseudo-gap
forming near the chemical potential. Figures 4(b) and 4(c),
plot the temperature evolution of the core-hole spectral func-
tion for moderately (Qd = Q f = 1.5) and moderately large
(Qd = Q f = 5.0) core-hole potentials, respectively. In both
cases, we have Qd > Qdc and one of the main features we
see is that the central peak, which originates from the second
term in Eq. (24) with zero winding number, is narrowing
and concentrating more spectral weight, as the weight on the
empty and doubly occupied sites goes down. As we increase
the core-hole potentials to large values the intensity of the
low-energy edge peak decreases, whereas the central one
increases while its width decreases. This is due to increased
self-energy effects arising when we put a core hole onto
a site already occupied by a d or f hole. The side peaks
are well separated from the central peak and their intensity
and integrated spectral weight under these peaks are reduced
compared to the weakly correlated case.
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FIG. 5. (a) Conduction-electron spectral function Ad (ω) in the
Mott insulator phase. [(b) and (c)] Core-hole spectral function Ah(ω)
for moderately large (Qd = Qf = 2.5) and large (Qd = Qf = 5.0)
core-hole potentials. The peak corresponding to a core-hole excita-
tion onto the doubly occupied manifold has a small spectral weight.
(d) Evolution of Ah(ω) for various core-hole potentials Qd = Qf at
fixed temperature T = 0.1.

C. Small-gap Mott insulator

As we increase U above Uc = √
2 we get into the Mott

insulating phase. We choose U = 2.0 which gives an insulator
with a small gap, �gap 
 0.25. In panel (a) of Fig. 5, we show
the spectral function of the d hole which clearly shows two
Hubbard bands centered around ±U/2 and separated by the
insulating gap �gap. Of course, it is well known that for the
D = ∞ hypercubic lattice the Mott insulating density of states
never has a true “gap” as there are always exponentially small
density of states inside the “gap region.”

Figures 5(b) and 5(c) show the core-hole spectral function
Ah(ω) for moderately large Qd = Q f = 2.5 and large Qd =
Q f = 5.0 core-hole potentials. In the insulating state at zero
temperature, a core hole can only be created on a site which
is occupied by either a d hole or an f hole. This gives rise to
single peak in each of the two conserved sectors of n f = 0
and n f = 1. For Qd = Q f = 2.5, we see a very sharp near
δ-function peak at � ∼ Q f on top of very broad asymmetrical
spectral feature. The sharp peak corresponds to the creation
of a core hole on a site already occupied by an f hole. The
sharpness of the peak arises due to both the static nature of
the f hole and the lack of core-hole screening effects in the
insulating state thereby making the core-hole state very long
lived. The broad asymmetrical part of Ah(ω) corresponds to
the creation of a core hole on a site occupied by a d hole. This
part consists of a broad peak near � ∼ Qd on top of a broad
background. As already mentioned, due to lack of screening
effects in the insulating states and strong self-energy effects
of the d hole, the core-hole state is short lived. The width of
the broad spectral feature is nearly equal to the width of the
lower Hubbard band. At finite temperature, some of the sites
become unoccupied while others becomes doubly occupied
and creation of core hole on either of these two sites gives
rise to additional side band peaks. The low-energy part of the

XPS spectra corresponding to the creation of a core hole on
an empty site, which originates from the first term in Eq. (24)
with nonzero winding number (Qd > Qdc), does not display
any edge singularity. Instead, it mimics the d-electron DOS
with lower and upper Hubbard bands separated by the Mott
gap of the size �gap, which is now temperature dependent. The
peak corresponding to the creation of a core hole on the dou-
bly occupied site is extremely weak (nearly invisible on the
scale of the plot) and has negligible spectral weight under it.

With increasing core-hole potentials, the peak at � ∼
Q f corresponding to core-hole excitation into the n f = 1
manifold largely remains the same and only shifts to higher
energies, but the spectral features at the low energy XPS
edge corresponding to a core-hole excitation onto the n f = 0
manifold shows qualitative changes as plotted in panels (c)
and (d). With increasing Qd , the broad peak from the upper
Hubbard band is enhanced in its high-energy part with the
further creation of a narrow peak at � ∼ Qd , which gets
gradually pushed out to higher energy and gradually separates
out of the broad background. Also, the core-hole lifetime
increases, as is evident from the narrowing and diverging peak
at � ∼ Qd . This is mainly due to the fact that the excited
core hole goes into the upper Hubbard band and its decay rate
decreases with increasing Qd as the d-hole density of states
involved in the decay process decreases with increasing Qd .
Due to the same reason, the integrated spectral weight under
the broad background also decreases, while its width remains
nearly same.

D. Large-gap Mott insulator

Finally we choose U = 4.0 to simulate a strong Mott insu-
lator. In panel (a) of Fig. 6, we show the spectral function for
the d hole which clearly shows two Hubbard bands separated

FIG. 6. (a) The d-hole spectral function Ad (ω) in a strong Mott
insulator. [(b) and (c)] Core-hole spectral function Ah(ω) for large
(Qd = Qf = 5.0) and very large (Qd = Qf = 8.0) core-hole poten-
tials, respectively. For temperatures larger than 1, side peaks corre-
sponding to core-hole excitations into empty and doubly occupied
manifold are clearly visible. (d) Evolution of Ah(ω) with core-hole
potentials Qd = Qf for fixed temperature T = 1.0.
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by a large insulating gap, �gap 
 1.8. In this case, the size
of the insulating gap is much larger than the hopping. In
Figs. 6(b) and 6(c), we show the core-hole spectral function
Ah(ω) for two core-hole potentials Qd = Q f = 5.0 and Qd =
Q f = 8.0, respectively. Because of the presence of a large
insulating gap in the d-hole spectral function and strong
correlation effects, the core-hole spectral functions shows
negligible temperature dependence for T � 1. Therefore we
choose temperatures equal to or larger than 1. At the low tem-
perature of T = 0.3, we see the two familiar spectral features
corresponding to the core hole being excited to two singly
occupied manifolds. The peak at � ∼ Qd is much sharper and
the broad spectral features have much less intensity compared
to the case of a small gap Mott insulator. This is mainly due
to reduced density of states and increased correlation effects.
For larger Qd = Q f = 8.0, the broad spectral features have
vanishingly small spectral intensity at T = 0.3 as shown in
panel (c).

As we increase temperature equal to or larger than the
hopping, the two nearly degenerate sharp peaks broaden and
eventually merge into a single broad peak. Also, there is clear
development of two additional spectral peaks at � ∼ 0 and
� ∼ Qd + Q f , which corresponds again to the creation of the
core hole on a thermally excited empty or doubly occupied
site, and the peak from the lower Hubbard band at � ∼ 0
becomes larger than the one from the upper Hubbard band
at � ∼ U .

In panel (d), we show the evolution of Ah(ω) with various
core-hole potentials Qd = Q f for T = 1.0. With increasing
core-hole potentials the peaks at � ∼ Qd , Q f becomes nar-
rower and gradually merge into a well defined Lorentzian
peak which separates out of the broad background. Other
peaks at the � ∼ 0 edge, which comes from the lower Hub-
bard band, and at � ∼ Qd + Q f , do not change their shape
with the increase of the core-hole potentials and are observed
only at high enough temperatures.

V. CONCLUSIONS

In conclusion, we have calculated the finite temperature
core-hole propagator (XPS spectrum) in the Falicov-Kimball
model using the Wiener-Hopf sum equation approach. We
have studied the core-hole spectral function, Ah(ω) for various
interaction strengths U and core-hole potentials Qd = Q f .

While the features of the weakly correlated metal for small
core-hole potential, Qd < Qdc are what we would expect at
nonzero temperature—they have the power-law singularity
suppressed and the spectral features broadened, but as we
enter the Mott phase and/or increase the core-hole potential,
Qd > Qdc, the system continuously evolves into a different
type of spectral function.

Because the Mott insulator strongly suppresses doubly
occupied and empty sites, the features of the Mott phase are
predictable, hence the peaks associated with hole creation
on those sites is sharply reduced. The suppression of one of

the edge singularities for large core-hole potential Qd > Qdc

is something new and less understood and we explain it by
the joint effect of the on-site Coulomb interaction U and the
core-hole potential Qd .

If we use these results to try to predict what the behavior
of time-resolved XPS spectra would look like, we need to
be aware of a few issues. First, we would expect the generic
broadening of features and enhancement of the satellite peaks
as the system absorbs more energy from the light pulse.
Second, we also anticipate significant broadening of the sharp
peaks in the spectra due to the probe pulse widths. Nev-
ertheless, there are a number of interesting results one can
predict could be extracted from such data. This includes the
interaction energies U , Qd , and Q f , which can be extracted
by examining the separations of different peaks. Since the
spectral line shapes change so much with temperature, they
might be able to be used as effective thermometers for the
hot electron gases. Finally, an analysis of the weights in
the satellite bands will yield information about the densities
of empty and doubly occupied sites, which may be one of
the more direct ways to measure doublon occupancy in the
system.

What implications does this work have for more general
models like the Hubbard model? The metallic phases are
difficult to compare when we are below the coherence tem-
perature of the Hubbard model, because the Falicov-Kimball
model is not a Fermi liquid. But at higher temperatures, or
in the insulating phase, we expect the behavior to be more
similar. We already know from Raman scattering studies that
the charge dynamics in the insulators are similar [32,33]. The
near delta function peak corresponding to the creation of a
core hole on a site occupied by a static f hole will certainly
be absent in the case of Hubbard model (instead it will be
broadened like the d-hole contribution). So, we do expect that
the temperature-dependent broad asymmetrical peak together
with the small low-energy peak corresponding to creation of a
core hole on a thermally excited empty site will survive in the
Hubbard model. Also, the broad nature of this peak suggests
that even without any additional broadening due to Auger-like
nonradiative processes, the core-hole lifetime will be short.

Note added in proof. Recently, we discovered that similar
ideas for in situ thermometry are being used in ultracold
atomic gases. References [38,39] describe how one can use
the shape of rf spectroscopy to determine the temperature.
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