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Inelastic x-ray scattering as a probe of electronic correlations
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We construct an exact dynamical mean-field theory for nonresonant inelastic light scattering in the infinite-
dimensional Falicov-Kimball model, which can be tuned through a quantum critical metal-insulator transition.
Due to the projection of the polarization orientations onto different regions of the Brillouin zone and due to the
transfer of energy and momentum from the weakly to the strongly correlated charge excitations, the nature of
the dynamics can be naturally interpreted as strongly temperature-dependent low-energy particle-hole excita-
tions and weakly temperature-dependent high-energy charge-transfer excitations which depend delicately on
the electronic correlations. These results can be used to provide important information concerning the evolution
of charge dynamics in different regions of the Brillouin zone.
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[. INTRODUCTION a theory for inelastic x-ray scattering. In particular, we de-
velop an exact dynamical mean-field theory for nonresonant
Inelastic x-ray scatteringvith meV accuracy over a spec- inelastic light scattering in a system which can be tuned
tral range of several eVfshas improved significantly over across the quantum critical point of a metal-insulator transi-
the past few years due to the increased photon flux of thirdtion. We calculate the inelastic x-ray cross section on both
generation synchrotron sources! The large cross section Sides of the transition and near the critical point.
of light-coupled probesgas compared to neutron scattering, The outline of this paper is as follows. In Sec. Il we
for example allows for a systematic study of the dispersive develop the general formalism for nonresonant inelastic
charge dynamics in a wide dynamical rangg(®) in solids ~ X-ray scattering and review simple physical ideas for weakly
and fluids. It has opened an additional window to study corcorrelated metals. In Sec. Ill, we present the specific formal-
relation effects on phonoﬁs,p|asmon§’, quasipartic]eé, ism for Calculating the X-ray response in the Falicov-Kimball
charge-transfer excitatiofis'° and orbital excitations: One ~ model in the limit of large spatial dimensions and in Sec. IV
particular point of interest has been the study of the evoluwe present the numerical results. Finally, we summarize our
tion of strongly correlated systems as some parameter of tH&sults and discuss them in light of the recent measurements
system, such as the electron density, is varied by doping d Sec. V. This paper expands the results for the insulating
pressure. While many single-particle properties have bee!ahasé“ to consi_der metals and materials close to the metal-
studied via angle-resolved photoemission, important queghsulator transition.
tions concerning the evolution of the unoccupied states are

now directly accessible via inelastic x-ray scattering. Il. FORMALISM
Recent experiments have focused on a number of corre-
lated (Mott) insulators such as L&uO, and SsCuO,Cl,,° A. Nonresonant response
CaCuO,Cl,,” NaV,0s,2 Nd,CuQ,,° and one-dimensional Light can scatter off of many different excitations in a

insulators SfCuO; and SpCu0,.2° The measurements have system, but here we focus on the inelastic scattering of x rays
revealed dispersive high-energy and low-energy excitationfom electrons. X rays, unlike optical photons, can exchange
which have been identified with a photon-induced chargéoth energy and momentum when they scatter with a solid.
transfer between different atomic orbitals or with transitionsThe scattering occurs as light creates charge fluctuations in
from the lower to the upper Hubbard band across an effectivdifferent locations of the Brillouin zon&BZ). These charge
g-dependent Mott gap. fluctuations are classified as either isotropic charge fluctua-

More recent measurements have begun to appear in méens or anisotropic charge fluctuatiofghich vanish when
terials doped from their parent Mott insulating phaSes. averaging theik-space variation over the BZThe way in
However, the theoretical development of inelastic x-ray scatwhich the charge fluctuations are created is dictated by the
tering in strongly correlated metals and insulators is jusfpolarization orientation of the incoming and outgoing pho-
beginning™®~1’ Of particular interest is a determination of tons set by the scattering geometry. These polarization orien-
how the upper and lower Hubbard bands, and consequentliations transform according to the operations of the point-
the Mott gap evolve with correlations. As experiments reactgroup symmetry of the crystal, and so must the charge
higher and higher resolution, it will shortly be possible to fluctuations that they create. It is through this mechanism
track the evolution of electronic correlations from strongly that the charge excitations in different regions of the BZ can
correlated insulators to strongly and then weakly correlatedbe systematically selected and explored via inelastic light
metals. The purpose of this contribution is to investigate suclscattering.
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These charge fluctuations relax by internal scattering prokindhard function which incorporates the symmetry depen-
cesses, such as due to impurities or Coulomb scattering, arttnce of the light-scattering amplitudesin the Lindhard
finally via the reemission of photons; inelastic x-ray scatterkernel® In particular, in the limitq—0 there is no low-
ing probes these relaxation processes at different regions ehergy inelastic light scatterin¢for three dimensionsas
the BZ and at different transferred energies. An importanthere is no phase space to create electron-hole pairs, and the
distinction between isotropic and anisotropic charge fluctuaenly excitation is the high-energy collective plasmon. This is
tions is that the former are coupled to long-range Coulomkanalogous to the situation of the charge susceptibility, which
interactions, while the latter are not. This has significant convanishes at finite frequencies wher=0 because the total
sequences on the polarization dependence of the observeHarge of the system commutes with the Hamiltonian. For
spectra. We now elaborate upon this further. finite q, the particle-hole continuum gives low-energy scat-

We limit our focus to the case of nonresonant x-ray scattering up to a frequency afgq (with v the Fermi velocity.
tering, since resonant processes have not yet been treat@¢hen scattering off an impurity potentis, ., is added this
exactly in any correlated itinerant model. The inelastic x-raysharp cutoff is smeared, and scattering occurs over a wide
response is given formally by a generalized density-densityange of transferred frequencies. The density response at
correlation function S(q,w)=— (1/7)[1+n(w)]x" (g, »), small g is given by an effective density-density Kubo
with formula'®

x(9,0)=([p(q),p(= D) () » §) a7t

[L(9,Q)=Ng——, 4
formed with an “effective” density operator given by xula. ) Faz+ 2 @

~ + with Ng the density of states at the Fermi level af[d1 the
P(Q):kE;T va(K)Co(k+0a/2)c,(k—0/2), (2) " relaxation rate for density fluctuations having a symmetry
' selected by light orientations labeled hy(L denotes an
n(w) denoting the Bose distribution function, and the doublejrreducible representation of the point group of the crystal,
prime superscript denoting the imaginary part. We relate thguch asA;q Or By, for a tetragonal crystal; we use=0 to
inelastic light-scattering vertex, to the curvature of the denote theAlg sectoj. Expanding the impurity potential in
energy bande(k) = —t*=;_;cosk;/\/d and the light polar-  terms of a complete set of basis functiofps(k) yields
izations through
O o Pk Vil ?= 2 ¢t (KT (K). 5
Ya(K)= = €a KoK €s- €

The width and location of the peak of the response is given
This holds in the limit of vanishing energy transfers, but cangy, ;Elz szlo_ T[l+ Dq2, where 7[1:27TNFFL is the

also be generalized in terms O.fSB”"OUi”'ZO”e, harmonics 105cattering rate that preserves charge fluctuations having sym-
other nonresonant cases. Heee; denote the incident and ety | andD is the diffusion constant related to the resis-

scattered x-ray polarization vectors, respectively, and W&ivity p by an Einstein relatiorD ~1=2e?Ngp. Here, we
choose unitkg=c=7%=1 and set the lattice constant equal 5,6 assumed that the impurity potential is rotationally in-
to 1. We can classify the scattering amplitudes by their pointy ariant and largely independent of momentum transfer. Thus
group symmetry operations. It is customary to h&ig de-  j this case, phase space is already created by the impurity
note the symmetry of the lattices (vav® andByg andBygq  geattering potential for anisotropid ¢ 0) density fluctua-
denote two of thel wave symmetries. For any dimensidn  tjons coupled to the x rays. However, isotropic density fluc-
>1, if we choosee'=(1,1,1...) and e’=(1,—11, yations (=0) are governed by the continuity equation and
—1,...), then we have theB,y sector, whilee'=e> st vanish ag=0 even in the presence of an impurity
=(1,1,1 ...) projects out the\,q sector, since thBo COM-  potential. Therefore, fok.#0 channels By,) the x-ray re-
ponent is identically zero for models with only nearest-ghonse has a Lorenzian line shape with a peak position and
neighbor hopping. Thus, we can cast the scattering ampligjigth which grows asj? for momentum transfers away from
tudes into a simple formxy,, (k)=—e(k) and yg, (K)  the zone centeq=0, while for L=0 (A,), there is only
=t*3_ jcosk;(— 1)I//d, which recovers thel=2 repre- low-energy scattering for finitq due to particle-number con-
sentations of the tetragonal point-group symmetry operationservation.

commonly used in Cusystems. We note that if we take the

pure charge vertex forAg, ya =1, then 5(q,0) lll. FORMALISM WITH CORRELATIONS

#Im{1/e(g o)}, with € the dielectric functio Coulomb interactions create phase space for particle-hole

excitations and lead to inelastic scattering evenga0 for
channels not having the underlying symmetry of the lattice.
It is useful to review the nonresonant response for weaklyThe scattering can be enhanced when the momentum struc-
correlated metals to determine where we expect to see thare of the Coulomb interaction is considered further. For
role of correlations emerge. For noninteracting electrons thexample, in a material having a nested or slightly nested
effective density response is given in terms of a generalize@fermi surface(FS) at some points in the BZ, the resulting

B. Weakly correlated electrons
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response would be enhanced for polarization orientationgrdering operator. The partition function isZ(\)

which highlight the nested or nearly nested regions of the= TresT.{exd —BHIS(\)), with the evolution operato$ de-

FS20 |n the case of antiferromagnetic interactions which arefined by

strong for momentum transfers ofr(w), the response is

appreciably modified for thB,4 channel in two-dimensional B B ) ,

tetragonal systents. The dispersion of these excitations can S(h)=exp — fo deO dr'c’(N(r,7")e(7') . (8)

then be tracked as a function of light momentum transfers

just as they can via neutron scattering. Thus, in principle]n these equations the Hamiltonian is the atomic Hamil-

inelastic x-ray scattering systematically tracks the role oftonian, which hag* =0 and all time dependence is with

correlations and the accompanying FS instabilities by explorrespect to this atomic Hamiltonian.

ing the polarization dependence and momentum-transfer de- In order to determine the Green’s function anywhere in

pendence of the resulting spectra. the complex plane, we follow the iterative algorithm of
In this paper, we are interested in carrying out calculationslarrell?® (i) begin with the self-energ}. set equal to zero;

in which electronic correlations can be handled exactly in &ii) determine the local lattice Green’s function from the Hil-

system which can be tuned through a quantum critical pointbert transform,

The Falicov-Kimball model, which has been used to describe

a variety of phenomenon in binary alloys, rare-earth com-

pounds, and intermediate-valence matefialsontains itin- G(Z):f dep(e)z-{—ﬂ—z(z)—e’ ©

erant band electrons and localized electrons, in which the

band electrons can hop with amplitdde*/2./d between With p(e€) the noninteracting DO%a Gaussian heye (iii )

nearest neighbors ondadimensional hypercubic lattice and extract the effective mediumG, from G~ *(2)+X(2)

interact via a screened Coulomb interactidmith the local-  =Gg '(2); (iv) calculate the new Green’s function from
ized electrons: G(2)=(1—w;)Gy(2) + W, /[Gy *(2)—U]; and (v) extract
the new self-energy fron®(z)=G,'(z2)— G *(z). Steps
t* (i) through (v) are repeated until the iterations converge.
H=—-—+ 2 CiTCj_FEfE Wi—,U«E CiTCi+UE CiTCiWi, Sometimes we need to perform weighted averages of the
24d (D i i i iterations to attain convergence. We usually work with solu-

(6)  tions that are converged to at least one part fi 1&ing this
i ) ) algorithm, we can determine the Green’s function and self-
wherec; ,c; is the spinless conduction-electron creatian-  energy either along the imaginary axis or along the real axis.
nihilation) operator at sitd andw;=0 or 1 is a classical These solutions are then employed to calculate the inelastic
variable for the localized electron number at $itE; and u light-scattering response functions.
control the filling of the localized and conduction electrons, ~ The inelastic light scattering is calculated by evaluating
respectively. We restrict consideration to half fillidgci)  the density-density correlation function defined in Eg).
=(w;)=1/2. The Bethe-Salpeter equation for the susceptibility is shown
In this model, at half-filling, the system posse$éesnon-  schematically in Fig. 1. Note that there are two coupled
Fermi-liquid metallic ground state fay <U and an insulat-  equations, which differ by the number of factors of the in-
ing state forU>U_.. The single-particle density of states elastic light-scattering vertex that are present. The solid lines
(DOY) at the Fermi levelFL) vanishes at the criticdl.  denote dressed Green’s functions in momentum space, and
~1.5* and the self-energy develops a pole. Asap- the symbol denotes the local irreducible charge vertex. The
proachedJ from below, a pseudogap develops near the Flcalculation of the relevant momentum summations implied
and forU>U, the DOS evolves into lower and upper Hub- in Fig. 1 is nontrivial. The starting point is the determination
bard bands separated at the band centetd.tifowever, the  of the direction in momentum space in which the transferred
DOS is independent of temperatugside from a trivial shift  momentumq lies. In this contribution we consider two
due to the temperature dependence of the chemical potentialifferent directions: (i) the zone diagonal, where

if applicable and thus it is not possible to determine theq=(q,q.,q,...,q) and (i) a generalized “zone
particle dynamics from the single-particle properties aftne. boundary,” where g=(0,,09,09,...,0g9) or q
The many-body problem is solv&dby first recognizing  =(q,,q,7.q,7, ...,q,7); in all cases we vary €q

that the self-energy and relevant irreducible vertex functions< 7-. We choose to call the wave vector (i) the zone
are local and then mapping the local objects of the latticehoundary because it reduces to the two-dimensional zone
problem onto an effective atomic problem in a time- boundary wherd=2 and it is a nontrivial generalization in
dependent dynamical field. In this procedure, we are inter- the infinite-dimensional limit. If, on the other hand, we ex-
ested in calculating the local Green’s function, which is de-amine the true infinite-dimensional zone boundary, where
fined by only one dimension has a nonzero wave vector component,
then that zone boundary maps onto the zone-center wave
G(7)=—TrT (e PHc(7)cT(0)S(N))/Z(\) (7)  vector(since only one of thel-components is nonzeroand
there is no dispersion. From now on we will refer to the
for imaginary timesr. Here, Tg; denotes the trace over con- generalized zone-boundary direction as the zone-boundary
duction and localized electrons aril denotes the time- direction.
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(0) product of one-dimensional integrals. Each integral needs to
y Y. =7 v be expanded just to the order ofil/and the resulting terms
a @ 7a a can be exponentiated into a form that has a Gaussian depen-
Tvo r
‘ 70 - Q 70

dence on\. The Gaussian integral can then be evaluated
-T I

directly. When we do this, we find that the relevant bare
susceptibilities have all of the@r dependence summarized in
the form of two scalar parameters

I
N

1
® g B

and

d
;o1 qj
%a (14)

d
1 o q;

o lim — i )
XB1g lim d j§:1 (-1 cosE.

d—ow

D!

FIG. 1. Coupled Dyson equations for the inelastic light-
scattering density-density correlation functions described by the
scattering amplitudey, . Panel(a) depicts the Dyson equation for
the interacting correlation function, while pan@®) is the supple-
mental equation needed to solve for the correlation functibe
difference in the two equations is the numbergf factorg. The

In situations where the summation in Ed4l) or (12)
vanish, the response function is not renormalized by the ir-
reducible charge vertex, and it can be expressed solely in
terms of the bare response functitthis phenomenon was
symbolT" stands for the local dynamical irreducible charge vertex.first seen for the optical _CondUCt'V?@- This never occurs

In situations where there are no charge vertex correctismsh as 0 the A;4 channel, but it does occur for tH#; 4 channel

B, Scattering along the zone diagonahe correlation function is When g lies on the zone diagonal. In all other cases, the
simply given by the firs(bare-bubblg diagram on the right-hand response function is renormalized by the irreducible charge

side of panela). vertex?® which takes the form
When evaluating the density-density correlation function, T(iwy,iopivj.0)=0 1 Zm 2y (15)
we will need to evaluate momentum summations of the M AFOTT I T G — G
27
form on the imaginary axii w,=i7T(2m+1) is the fermionic

1 Matsubara frequency ana,=2i 7Tl is the bosonic Matsub-
ara frequencly Here, 2 ,=2(iw,) is the local self-energy

2+ pn—2(2) (k) on the imaginary axis an@,,= G(iw,,) is the local Green’s
function on the imaginary axis. These vertex corrections are

1 . . . .

% (10) particularly crucial for theA;; symmetry in order to satisfy

z+u—3(z)— e(k+q) Ward identities and particle-number conservation. Note that

the vertex corrections enter for the different symmetry chan-

nels away from the zone diagonal because at a finite momen-

tum transfer, the different symmetry representations generi-

> cos(kﬁ%

ko]

for the A, 4 sector and

q; - .
> > cos{ kj+ o |(—1))———— cally mix together.
ko 2 2+ p=2(2)— (k) The strategy for determining the final forms for the re-
1 sponse functions on the real axis is to first calculate the re-
X (11 sponse functions on the imaginary axis and then replace Mat-
z+p—%(2)~e(k+q) subara frequency summations by contour integrals that

for the B, 4 sector. In the above equatiorsgenotes a num- surround the poles of the Fermi-Dirac distribution function
ber in the complex plane. The summation can be evaluatef(®)=1[1+exp(Bw)] with B=1/T. Then, the contours are
by first rewriting each momentum-dependent Green's funcdeformed to be parallel to the real axis, and terms that de-
tion as an integral of an exponential function pend on the bosonic Matsubara frequencyf@s+iv;) are
replaced byf(w). Finally, we analytically continue the

([ o 3 (2)— etk bosonic Matsubara frequencies from the imaginary to the
_Ifo dneMet (@l real axis. This procedure was carried out in detail for the
(17 Raman respons®and will not be repeated here.

The final formulas for the response functions are compli-
and then expanding each band-structure energy in terms ehted integrals of functions that depend on one of the six
the summation over each component of the wave vectodifferent bare susceptibilities. These six bare susceptibilities
Then the integral over momentum factorizes into an infiniteare

1
Z+u—3(2)—e(k)
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(@:X.2) J‘“ dep(e) 1 1 . ot+tvtu—3(wt+tv)—Xe 16
(1); V)= — € € o0 ’
xo e P ot S (0)—e (1% 1-X?
% (@:X.9) f* dep(e) 1 1 . wtv+tu—2(o+tv)—Xe a
Xo(w; X, v)=— ep(e oo ,
0 o 0t p—3*(w)—e J1-X2 1-x2
1 . o+v+u—2(o+v)—Xe
, X' [ Vi-x2 7 V1-Xx2
Xo(@ X,v)=— dep(e) 5
—w [w+tu—3(w)—€]
1 w+v+,u,—2(w+v)—XeF o+v+u—2(o+v)—Xe
2 J1-X2 - J1-X2 "
1—X2 ot+tp—2(w)—€ ' (18
1 o+v+u—2(o+v)—Xe
., X[ 1-X? V1-X2
Xo(@X,n)= 5| dep(e) —
—w [wtpu—3*(w)— €]
w+v+,u,—2(w+v)—XeF o+v+u—23(o+v)—Xe
2 J1-X2 - N 1
1-X? wtp—3"(w)—e€ ’ 19
1 F(m+v+;¢*2(w+v)7XE _w+V+/.L*2(w+V)*XE (w‘FV‘F;L*E((u‘FV)*XE
N C C O & 1-x2 °~ 1-Xx2 2 1-Xx2 ” N
e B [0t S0P e [t = S(w)— P
. wtv+u—3(wt+v)—Xe qw+v+p.*2(w+v)7XE _a)+v+,u.*2(w+v)7Xe wt+v+u—3(wt+v)—Xe
1 ” X2 “ X2 X2 ” X2
7(1—X2)3’2 w+tpu—3(w)—€ '
(20
and
1 E w+v+,u,72(a)+v)7Xe) 1_(A)+V+,U,*2((A)+V)*XEF w+V+,u,72(w+V)7Xe>
- Xolwixw) X7 1-x2 1-Xx2 2 1-Xx2 ” J1-Xx2 1
YoloX) =TT g | deld [w+p—3*(w)— €] 11X [o+p—3*(0)— €] C(1-x2)¥?
F (w+y+p.72(w+v)7Xe ’)w+v+,u.*2(w+v)7Xe _ w+v+p.*2(w+v)7X5F (w+v+p.*2(w+u)7X5
* 1-x2 “ J1-x2 X2 * X2
x w+tu—3*(w)—€
(21

In these equations;..(z) = fdep(€)/(z— €) is the Hilbert transform of the noninteracting DO €) = exp(— 2)/\/7].
The A;4 andB 4 responses both can be written as
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~ X +E(w)—2(m+v) X Tl X 120 X
XO(wl !V) G(w)—G(w+v) [Xo(w! vv)XO(w! ,V) XO ((1), !V)]

i o
X(q,y)=zf_mdw f(w) S(w)—2(w+7v)
T (@) = Glat ») Xol@Xer)

3 (w) =3 (0+v)

X6 (03X, v)+ ()G (0t 7) [X5 (@ X, ) x5 (@ X,0) = x6°* (@:X, )]
—f(w+v)
1+ S*(w)—2*(w+v) (0 X.v)
G*(0)—G*(w+ 1) 0 7
~ 3*(@)-3(0ty) - ~ ~
Xo(@;X,v)+ [xo(@;X,v) xo(@;X,v) = X (@;X,v)]
G*(w)—G(w+7v)
—[f(0)—f(o+v)] : (22)
N S*(w)—2(w+v)~ (@:X.)
G* (@)~ G(wt+n) "
|
In the case of the\,4 response on the zone diagonal Finally, a careful examination of Eq$16)—(22) shows

=(9,9, ...,0), we have X=cosq and X'=cosy2 that the response function depends only s Since the
=VJ(1+X)/2. In the case of thé\,4 response on the zone only difference for theA; 4, andB; 4 responses along the zone
edge, we haveX=(1+cosq)/2 andX'=(1+coxy2)/2=(1  edge(for —1<X=<0) is a sign change iX’, the x-ray scat-
+1/X)/2 for g=(00,04, - . . ,0g) andX=(cosq—1)/2 and  tering is identical for theA; 4 and By, channels along the
X'=cosQ/2)[2=\(1+X)/2 for q=(q,m,q,m, ..., d,7).  zone edge for-1<X<0. It might be difficult to locate the

In the case of thé,4 response on the zone edge, we haverelevant path in the BZ that would show this behavior in two
X=(1+cosq)2 and X'=(—1+coxy2)/2=(—1+X)/2  or three dimensions, so examining the zone corner for the
for g=(0,9,04, ...,0g) and X=(cosq—1)/2 and X"=  effects of nonlocal charge fluctuations still remains the best
—cos@/2)/2=—-(1+X)/2 for q=(q,w,q,m, ...,d,7). option.

The case of thd,4 response on the zone diagonal is much

simpler, because it does not have any renormalizations due to

the charge vertex and does not dependXon It becomes IV. RESULTS

A. Correlated metal

i (= L .
- . Keeping in mind what we expect for weakly correlated
V)= do{f i X, X
XBlg(q ) 41‘J_w o{f(@)xo(@X,) metals, we present the results {dr=t*/2 at different tem-
. peratures in Figs. 2 and 3 f@,, and A4 inelastic x-ray
—flotv)xp(@;X,v) scattering, respectively, as a function of the transferred en-
~ ergy for different momentum transfers throughout the BZ
~[flo)=flo+n)Ixo(@; X, V). (23 easured by the momentum-space paramét&igures 2a)

There is a special point in momentum space, where the rédd 3@ refer to scattering along the zone diagonél

sponse functions become simple again. This occurs at the ¢°Sd  for  the  zone-diagonal ~wave vectorq

(7,7, ... ,m) point, whereX=—1 andX’ =0. In this case, =(q.0.0, ....0), anq Figs. ) and 3b) refer to scattering

, — . along the generalized zone edddere, we haveq
Xo=0 and x, is proportional toy,, so the Bethe-Salpeter =(q,09.0,...09,0) for 1=X=(1+cosq)/2=0 and q
equation factorizes, and the susceptibility in E§2) be- =(7-r1q, wq o ’77 q) for 0=X=(—1+cosg)2=—1].
comes proportional to the bare susceptibifdy any symme-  1hg cyryes have been shifted vertically for clarity. The low-

try. Hence, theA, 4 response and thB, 4 response are iden- gt set of curveX =1 corresponds to Raman scattering with
tical at that point in the BZ. In fact, this result implies that gptical photons®

polarized measurements at the zone-corner point can imme- Fqr the By, channel(Fig. 2, a well-defined low-energy
diately show the effects of nonlocal charge fluctuations orfermi-like coherence peakbelow U=0.5*) moves to

the inelastic x-ray response functions, since any deviation ofigher energies and broadens as one moves away from the
the A;4 signal from theB, signal arises from effects of zone centerX=1), as would be expected of Landau damp-
nonlocal charge fluctuationgVe feel this may be one of the ing via particle-hole creation at larger (Refs. 18 and 31
cleanest experimental tests for the importance of nonlocafrecall the Falicov-Kimball model is not a Fermi liquid when
charge fluctuations in a correlated many-body system. U=+#0, but can be viewed as a “dirty” Fermi liquid for small
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-
n

Peak Position, Width [t*]

=)
—T O

Il 1 1 1 N 1 N
b 12 3 0 1.2 3 4 o3 0.5 0 05 o
Frequency [t*] X
FIG. 2. Inelastic x-ray scattering response b= 0.5* in the FIG. 4. The positioncircles and the width(diamond$ of the

B14 channel alonda) the BZ diagonal andb) along the zone edge low-energy peak in th®,, channel for momentum transfers along
for the half-filled Falicov-Kimball model on a hypercubic lattice. the BZ diagonal foiT=0.1t* as shown in Fig. 2.

The solid, dotted, short-dashed, and long-dashed curves correspond

to temperature$ =0.1, 0.25, 0.5, and 1.0, respectively. The curvesmomentum transfers away from the BZ center and then
have been offset for clarity. slows its growth rate farther from the zone cerftecall that

. ) . X=cosq so an initialg? dependence translates into a linear
enoughU). In addition, the peak sharpens with decreas'ngdependence o).

temperaturg as the channels for Landau damping are lost. No An important difference is that thé,, results have no
particular signature can be seen at the energy transfe, of low-energy spectral weight fog=0 as a result of particle-

since it falls within the line shape of the Fermi-like coher- number conservation. In a model with long-range Coulomb
ence peak, and thus the role of electronic correlatipns, Wh"ﬁwteractions, the only excitation would be a high-energy plas-
present, are obscured by the larger Landau damping. mon which is soft for uncharged systems, but is pushed up to
In Fig. 4 we plot the position and width of the low-energy higher energies via the Higgs mechanism by the Coulomb
peak for theB,y channel for momentum transfers along the e raction. In our short-range model, a mild peak appears on
BZ d'ag"”a'- The peak moves to higher frequencies from[he energy scale of botb and the bandwidth at the zone
~0.23% for small momentum transfes<1 and reaches a conter(we cannot differentiate which one dominateShe
maximum-~t* for momentum transfers slightly greater than yetex corrections do not completely remove low-energy
(ml2ml2,...) before softening as the BZ cOMer gqaitering for any finite value af, and the low-energy spec-
(m,, ... ) isapproached. In fact, the peak position is M-y weight grows for increasing either along the zone di-

parabl_e toU for large momentum.transferg in. all dirgctions. agonal or the zone edge. For largethe A, spectra have a
The width of the peak grows continually with increasipgs temperature dependence similar to g, response, domi-

more and more phase space is created by which charge exz, by particle-hole excitations. In fact, thg, and B,
citations may relax. The width initially grows likg? for responses are identical at ther,(r, . . . ) poirgn X:—f

due to the local approximation. Any variation in the signal at
the zone corner in different symmetry channels is due to
nonlocal many-body correlations.

For low g however(such asX=0.5), the temperature
dependence is honmonotonic due to a competition between
increased vertex corrections, which deplete spectral weight,
and decreased patrticle-hole damping, which aggregates spec-
tral weight into the Fermi-like coherence peak as the tem-
perature is reduced. It is important to note that for an unpo-
larized (partially polarizedd measurement, the x-ray response
is a (weighted superposition of theB;; and A,y spectra.
However, the spectra at smajl in a metal would largely
have contributions from th&,, channel due to the signifi-
cant phase-space reduction in #hg, channel.

0 1 2 3 4

3
Frequency [t]

. . . B. Near critical dynamics
FIG. 3. Inelastic x-ray scattering resporide-0.5* in the A4

channel alonda) the BZ diagonal andb) along the zone edge. The Now we turn to our results for a near critical value bf
solid, dotted, short-dashed, and long-dashed curves correspond t1.5* ~U_, where the density of states vanishes at the
temperature§ =0.1, 0.25, 0.5, and 1.0, respectively. Fermi level and the system undergoes a metal-insulator tran-
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4 0 1
Frequency [t*]

3 _4 0 1
Frequency [t*]

FIG. 5. Inelastic x-ray scattering resporide=1.5* in the By, FIG. 6. Inelastic x-ray scattering resporide= 1.5* in the A
channel alonga) the BZ diagonal ando) along the zone edge. The channel alonga) the BZ diagonal andb) along the zone edge. The
solid, dotted, short-dashed, and long-dashed curves correspond 4elid, dotted, short-dashed, and long-dashed curves correspond to
temperature§ =0.1, 0.25, 0.5, and 1.0, respectively. temperature3 =0.1, 0.25, 0.5, and 1.0, respectively.

sition (our choice forU lies just on the insulating side of the C. Insulator

metal-insulator transition We plot in Figs. 5 and 6 the re- ) ) ) .
sults for theB,, andA, 4 channels, respectively, for the same Turning to the insulating phase, our results for 2t
temperature ranges as in the previous plots. The effect P the Big and A,4 channel are shown in Figs. 8 and 9,
electronic correlations is clearly visible. For both g, and respectively. Clearly, two features can be resolved in both the
the A;4 spectra, two peaks become discernable at sgall Big andAg Chf””ek a small, dispersive low-energy peak for
the low-energy peaksimilar to the one observed for smaller frequencies~t* and a large, dispersionless charge-transfer
values ofU) and a nondispersive high-energy peai an peak~U well separated from the low-energy peak. Here, we
energy of roughlyJ corresponding to transitions between the SE€€ more clearly the devglopmen_t of the transfe_r of spectral
lower and the upper Hubbard bandndeed, the results at Weight from low frequencies to higher frequencies as tem-
large q are more similar to the small results, since the pe_rature is I0\_Nered, with a more qlearly defined isosbestic
Landau damping pushes the low-frequency peak into th€0INt separating the low- and high-energy transfers, as
high-frequency peak and further smears both peaks. AgairtnoWn in Fig. 10. , _

the low-energy peak is removed near the zone center for the |N€ low-energy depletion of spectral weight and con-

A, channel, but in this case the charge-transfer Hedla comitant increase of spectral weight at high energies above
fr(la?quency néaU) remains the isosbestic poinfas T is reduced to zejowas recently

It is important to note that even though the system is neagiscussed in Ref. 14 fo=4t* (which lies deep on the

critical, the low-energy spectral weight is visible, particularly insulating side of the transitignhere the |sosbest!c pomt. IS
in the By, channel. We now focus on the spectral weight inmore clearly observed. The low-energy feature in the insu-

this region as a function of temperature, shown in Fig. 7. ifating phase is determined by thermally generated double

this low-frequency region, one can clearly see for Big
channel that the low-energy spectral weight increases with
increasing temperature throughout the BZ. This is most
clearly seen atj=0. For theA,4 channel, the same behavior

is masked by the role of vertex corrections which reduce the
spectral weight for momentum transfers near the BZ center.
Nevertheless, the growth of intensity with increasing tem-
perature is clearly seen in both channels. The growth is par-
ticularly clear at low-frequency transfers, and for increasing
transfers the effect vanishes and crosses over at larger fre-
guencies to a region where the spectral weight depletes as

e o o
W ) o1

o
[¥)

X-ray response [arb. units]

temperature is increased. The point separating these regions i 0.1
occurs at a crude isosbestic point nead.5*, where the [x=1_o=mne
spectra are roughly independent of temperature. The isosbes- 0 — .1 T
tic point becomes less well defined for momentum transfers 0 02 04 06 08 evcvip™* 06 08 1
. quency [t]
away from the zone center, and therefore it is most clearly
observable in Raman measurements inBig channel. As FIG. 7. Detail of the low-energy inelastic x-ray scattering re-
the temperature is increased further, the isosbestic behavigponseU=1.5* along the zone diagonal fag) the B, channel
disappears. and(b) theA,4 channel for the temperatures shown in Figs. 5 and 6.
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T T T
_ 1 /"\ B1g zd (a)- T B1g ze (b)_
~r ///Q\\ X=-1-_ ///—\\ X=-1-

b
o

1
FS

o o
) )

X-ray response [arb. units]
o

| x=1

) =~ /| N |X=1 -~ 4 1 N |X=1 0 /f—-. R |_.’| . x=1l 1’:;|”| .
00 1 2 4 5 0 1 2 3 4 5 6 0 02505075 1 125 0 02505075 1 12515
Frequency [t*] Frequency [t*]
FIG. 8. Inelastic x-ray scattering responde=2t* in the Big FIG. 10. Detail of the low-energy inelastic x-ray scattering re-

channel alonga) the BZ diagonal andb) along the zone edge. The SPonsdJ=2t* along the zone diagonal f¢a) the B;4 channel and
solid, dotted, short-dashed and long-dashed curves correspond @) the Aig channel for the temperatures shown in Figs. 8 and 9.
temperature§ =0.1, 0.25, 0.5, and 1.0, respectively.

our previous results fotJ=4 in which the two peaks are

occupancies which become unpopulated at lower tempera(yerrtc;; separated and the isosbestic point is more clearly ob-

ture. The high-energy peak reflects the energy scale for ex: . . . .
citations across the Mott gap and is relatively dispersionles 3 l\Ne r.m:]? trlat ;’;V?ln '2 t:]e |rt1rsur:a;unrg ?a;s(?[ therehlsnnno lspec—
due to the local nature of the correlations. In contrast, th(ﬁ%ﬁ weig ? fh ? € ed?y afs;r:e S to Tﬁg ]f:ﬂ? el |
low-energy feature is a consequence of thermally generate, us we note that regardless ot the strengih of the correla-
double occupancies which open a low-energy bénl to tions, the Raman response=0) ar)d the inelastix-ray
energies ~t*) able to scattex rays. The low-energy peak responseﬂ?t smatg shoqld bet d?rg_lnatedt_byt thIBflg re- "
disperses due to Landau damping by the thermally generat&?qnse' IS can be an important diagnostic tool for Investi-
excitations, created in greater numbers at lamgeThese gating the nature of charge dynamics in different regions of

excitations are frozen out for decreasing temperature, and trge BZ due to the projection of thig,q scattering amplitude

low-energy intensity disappears. Only scattering across th rm factors compared tg.
Mott gap remains at an energy transferf The charge-

transfer peak for alf broadens for increasing temperature V. SUMMARY AND DISCUSSION
while the low-energy peak gains intensity from zero as tem-
perature is increased, particularly in tBg, channel. As a In summary, we have constructed a formally exact theory

_for nonresonant x-ray scattering in a system which can be
éyned across a quantum metal-insulator transition. We fo-
cused on the polarization and momentum-transfer depen-
dence of the resulting spectra as a way of discerning the role
- L of electron correlations. In particular, the way in which the

1 A. zd - A, ze (b1 spectral weight is transferred over different frequency re-
™\ A1 (@) ™\ A1g2e (b) : ; )
Toolk L= £ LN i gions as a function of temperature can shed light on the
z 0.8k - = o ~ x=-1 strength of the electronic correlations, and the momentum
3 0. e

dependence of the observed spectra can be used to determine

consequence, bot,; andA;4 possess a nondispersive isos
bestic point—a frequency at which the spectra are temper
ture independent—around~U/2. This result agrees with

g 0.7 “hot regions” on the FS. In general, the temperature and
5 06 polarization dependence of the spectrum would assist in an
205 interpretation of observed peaks in the x-ray spectrum of
3_04 correlated insulators for example.
8- In addition, we have pointed out a number of features
.03 which reflect the nature of the electronic correlations. One
fo2 important finding concerns the polarization dependence of
> 04 g the results for momentum transfers at the BZ corner
0 L (7,7, ...,m). In a theory in which the correlations are
0 1 2 3 4Frei1ueoncy1[t*]2 3 4 5 6 purely local, we find that the response function should be

identical at this point for both,, andB,4 scattering geom-
FIG. 9. Inelastic x-ray scattering responde=2t* in the A4 etries and that any difference can be attributed to the impor-
channel alonga) the BZ diagonal andb) along the zone edge. The tance of nonlocal correlatioriindeed, they are identical for
solid, dotted, short-dashed, and long-dashed curves correspond tol<X=<0 along the generalized zone boundaty addi-
temperature3 =0.1, 0.25, 0.5, and 1.0, respectively. tion, we have pointed out that for log the full response is
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dominated by theB;4, channel which projects out particle- states or collective modes of the system such as plasmons or

hole excitations. Thus in this limit, the excitations can bemagnong accessible to scattering transitiors.

directly probed and tracked as a function of temperature. ~ We have also chosen to focus on the paramagnetic metal
There is currently limited experimental data concerningt® paramagnetic-insulator transition. The Falicov-Kimball

the polarization and/or temperature dependence of the of0d€l, however, possesses phases containing charge order
%pd phase separation. It would be extremely useful to exam-

served spectra in either correlated metals or insulators an o . J :
thus many of our predictions remain open to experiment ne the excitations in the ordered phases via light scattering
this model. More generally, dynamical mean-field theory

verification. At this stage, current experiments have lfocuse an be used to address the excitations in the ordered phase of
on collective excitations such as the plasthonorbiton or  this model as well as the Hubbard model.

excitations across a Mott gap in correlated insulatofs? We conclude with a discussion on the applicability of our
Our theory would predict several effects which could serveresults for the limit of large dimensions to finite-dimensional
as a fingerprint of the role of electronic correlations in bothsystems. One important consequence of lower dimensions
correlated metals and insulators by a systematic study of theould be that the self-energy and irreducible vertex function
dependence on temperature and polarization orientations. Miill not be strictly local and the momentum dependence may
particular, one could use x-ray scattering to elucidate eleccrucially alter not only the formalism but also the spectral

tron dynamics near and through a quantum critical metal€volution of the response as correlations are changed via
insulator transition. doping. Particularly, the spectra might show dispersive fea-

Our theory does not address the role of resonant scatterirfy®S Which are much more complex than the ones we ob-

and the connection to multiband systems. To capture res¢erved in these calculations. We again note that the inelastic

nance effects, detailed information is needed about the efcray spectra for momentum transfers at the BZ corner

ergy separation of the various bands as well as the matriyyou'd be very useful to quantify the importance of these

elements which couple the valence and conduction bands V(&onlocal correlations. One should note, however, that the

light scattering. For a Mott insulator this would include reso- roughness” of the Fermi surface actually simplifies as the

nant transitions between the upper and lower Hubbard band'gmensmnallty is lowered, so th_e infinite-results aIr_ea_dy
as well as between excitons. Recently, this has been a(lp_clude_many comple_x geom.etncal effects of the infinite-
dressed via exact diagonalization stuffieand a spin- dimensional hypercubic Fermi surface.

polaron approach’ and its formulation for the Falicov-
Kimball model is presently under investigation by us. A
more realistic theory for resonant inelastic x-ray scattering We would like to thank Y.-J. Kim, J. P. Hill, M. V. Klein,
should also include resonant transitions in which the deepnd M. van Veenendaal for valuable discussions. J.K.F. ac-
core hole(created by the incident x-raydecays via Auger knowledges support from the NSF under Grants Nos. DMR-
processes and must also include the strong perturbing effe@973225 and DMR-0210717. T.P.D. acknowledges the sup-
of the core hole on any intermediate stateach as band port by NSERC and PREA.
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