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Inelastic x-ray scattering as a probe of electronic correlations
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We construct an exact dynamical mean-field theory for nonresonant inelastic light scattering in the infinite-
dimensional Falicov-Kimball model, which can be tuned through a quantum critical metal-insulator transition.
Due to the projection of the polarization orientations onto different regions of the Brillouin zone and due to the
transfer of energy and momentum from the weakly to the strongly correlated charge excitations, the nature of
the dynamics can be naturally interpreted as strongly temperature-dependent low-energy particle-hole excita-
tions and weakly temperature-dependent high-energy charge-transfer excitations which depend delicately on
the electronic correlations. These results can be used to provide important information concerning the evolution
of charge dynamics in different regions of the Brillouin zone.
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I. INTRODUCTION

Inelastic x-ray scattering~with meV accuracy over a spec
tral range of several eV’s! has improved significantly ove
the past few years due to the increased photon flux of th
generation synchrotron sources.1–11 The large cross sectio
of light-coupled probes~as compared to neutron scatterin
for example! allows for a systematic study of the dispersi
charge dynamics in a wide dynamical range (q,V) in solids
and fluids. It has opened an additional window to study c
relation effects on phonons,2 plasmons,3 quasiparticles,4

charge-transfer excitations,5–10 and orbital excitations.11 One
particular point of interest has been the study of the evo
tion of strongly correlated systems as some parameter o
system, such as the electron density, is varied by dopin
pressure. While many single-particle properties have b
studied via angle-resolved photoemission, important qu
tions concerning the evolution of the unoccupied states
now directly accessible via inelastic x-ray scattering.

Recent experiments have focused on a number of co
lated ~Mott! insulators such as La2CuO4 and Sr2CuO2Cl2,6

Ca2CuO2Cl2,7 NaV2O5,8 Nd2CuO4,9 and one-dimensiona
insulators Sr2CuO3 and Sr2CuO2.10 The measurements hav
revealed dispersive high-energy and low-energy excitati
which have been identified with a photon-induced cha
transfer between different atomic orbitals or with transitio
from the lower to the upper Hubbard band across an effec
q-dependent Mott gap.

More recent measurements have begun to appear in
terials doped from their parent Mott insulating phases12

However, the theoretical development of inelastic x-ray sc
tering in strongly correlated metals and insulators is j
beginning.13–17 Of particular interest is a determination o
how the upper and lower Hubbard bands, and conseque
the Mott gap evolve with correlations. As experiments rea
higher and higher resolution, it will shortly be possible
track the evolution of electronic correlations from strong
correlated insulators to strongly and then weakly correla
metals. The purpose of this contribution is to investigate s
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a theory for inelastic x-ray scattering. In particular, we d
velop an exact dynamical mean-field theory for nonreson
inelastic light scattering in a system which can be tun
across the quantum critical point of a metal-insulator tran
tion. We calculate the inelastic x-ray cross section on b
sides of the transition and near the critical point.

The outline of this paper is as follows. In Sec. II w
develop the general formalism for nonresonant inela
x-ray scattering and review simple physical ideas for wea
correlated metals. In Sec. III, we present the specific form
ism for calculating the x-ray response in the Falicov-Kimb
model in the limit of large spatial dimensions and in Sec.
we present the numerical results. Finally, we summarize
results and discuss them in light of the recent measurem
in Sec. V. This paper expands the results for the insula
phase14 to consider metals and materials close to the me
insulator transition.

II. FORMALISM

A. Nonresonant response

Light can scatter off of many different excitations in
system, but here we focus on the inelastic scattering of x r
from electrons. X rays, unlike optical photons, can exchan
both energy and momentum when they scatter with a so
The scattering occurs as light creates charge fluctuation
different locations of the Brillouin zone~BZ!. These charge
fluctuations are classified as either isotropic charge fluc
tions or anisotropic charge fluctuations~which vanish when
averaging theirk-space variation over the BZ!. The way in
which the charge fluctuations are created is dictated by
polarization orientation of the incoming and outgoing ph
tons set by the scattering geometry. These polarization or
tations transform according to the operations of the po
group symmetry of the crystal, and so must the cha
fluctuations that they create. It is through this mechani
that the charge excitations in different regions of the BZ c
be systematically selected and explored via inelastic li
scattering.
©2003 The American Physical Society05-1
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These charge fluctuations relax by internal scattering p
cesses, such as due to impurities or Coulomb scattering,
finally via the reemission of photons; inelastic x-ray scatt
ing probes these relaxation processes at different region
the BZ and at different transferred energies. An import
distinction between isotropic and anisotropic charge fluct
tions is that the former are coupled to long-range Coulo
interactions, while the latter are not. This has significant c
sequences on the polarization dependence of the obse
spectra. We now elaborate upon this further.

We limit our focus to the case of nonresonant x-ray sc
tering, since resonant processes have not yet been tre
exactly in any correlated itinerant model. The inelastic x-r
response is given formally by a generalized density-den
correlation function S(q,v)52(1/p)@11n(v)#x9(q,v),
with

x~q,v!5^@ r̃~q!,r̃~2q!#& (v) , ~1!

formed with an ‘‘effective’’ density operator given by

r̃~q!5(
k,s

ga~k!cs
†~k1q/2!cs~k2q/2!, ~2!

n(v) denoting the Bose distribution function, and the dou
prime superscript denoting the imaginary part. We relate
inelastic light-scattering vertexga to the curvature of the
energy bande(k)52t* ( j 51

` cosk j /Ad and the light polar-
izations through

ga~k!5(
a,b

ea
s ]2e~k!

]ka]kb
eb

i . ~3!

This holds in the limit of vanishing energy transfers, but c
also be generalized in terms of Brillouin-zone harmonics
other nonresonant cases. Here,ei ,s denote the incident and
scattered x-ray polarization vectors, respectively, and
choose unitskB5c5\51 and set the lattice constant equ
to 1. We can classify the scattering amplitudes by their po
group symmetry operations. It is customary to haveA1g de-
note the symmetry of the lattice (s wave! andB1g andB2g
denote two of thed wave symmetries. For any dimensiond
.1, if we choose ei5(1,1,1, . . . ) and es5(1,21,1,
21, . . . ), then we have theB1g sector, while ei5es

5(1,1,1, . . . ) projects out theA1g sector, since theB2g com-
ponent is identically zero for models with only neare
neighbor hopping. Thus, we can cast the scattering am
tudes into a simple form:gA1g

(k)52e(k) and gB1g
(k)

5t* ( j 51
` cosk j (21) j /Ad, which recovers thed52 repre-

sentations of the tetragonal point-group symmetry operat
commonly used in CuO2 systems. We note that if we take th
pure charge vertex forA1g , gA1g

51, then S(q,v)

}Im$1/e(q,v)%, with e the dielectric function.18

B. Weakly correlated electrons

It is useful to review the nonresonant response for wea
correlated metals to determine where we expect to see
role of correlations emerge. For noninteracting electrons
effective density response is given in terms of a generali
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Lindhard function which incorporates the symmetry depe
dence of the light-scattering amplitudesg in the Lindhard
kernel.19 In particular, in the limitq→0 there is no low-
energy inelastic light scattering~for three dimensions! as
there is no phase space to create electron-hole pairs, an
only excitation is the high-energy collective plasmon. This
analogous to the situation of the charge susceptibility, wh
vanishes at finite frequencies whenq50 because the tota
charge of the system commutes with the Hamiltonian. F
finite q, the particle-hole continuum gives low-energy sc
tering up to a frequency ofvFq ~with vF the Fermi velocity!.
When scattering off an impurity potentialVk,k8 is added this
sharp cutoff is smeared, and scattering occurs over a w
range of transferred frequencies. The density respons
small q is given by an effective density-density Kub
formula19

xLL9 ~q,V!5NF

Vt̃L
21

V21 t̃L
22

, ~4!

with NF the density of states at the Fermi level andtL
21 the

relaxation rate for density fluctuations having a symme
selected by light orientations labeled byL (L denotes an
irreducible representation of the point group of the crys
such asA1g or B1g for a tetragonal crystal; we useL50 to
denote theA1g sector!. Expanding the impurity potential in
terms of a complete set of basis functionsfL(k) yields

uVk,k8u
25(

L
fL* ~k8!GLfL~k!. ~5!

The width and location of the peak of the response is giv
by t̃L

215tL50
21 2tL

211Dq2, where tL
2152pNFGL is the

scattering rate that preserves charge fluctuations having s
metry L andD is the diffusion constant related to the res
tivity r by an Einstein relationD2152e2NFr. Here, we
have assumed that the impurity potential is rotationally
variant and largely independent of momentum transfer. T
in this case, phase space is already created by the imp
scattering potential for anisotropic (LÞ0) density fluctua-
tions coupled to the x rays. However, isotropic density flu
tuations (L50) are governed by the continuity equation a
must vanish atq50 even in the presence of an impuri
potential. Therefore, forLÞ0 channels (B1g) the x-ray re-
sponse has a Lorenzian line shape with a peak position
width which grows asq2 for momentum transfers away from
the zone centerq50, while for L50 (A1g), there is only
low-energy scattering for finiteq due to particle-number con
servation.

III. FORMALISM WITH CORRELATIONS

Coulomb interactions create phase space for particle-h
excitations and lead to inelastic scattering even atq50 for
channels not having the underlying symmetry of the latti
The scattering can be enhanced when the momentum s
ture of the Coulomb interaction is considered further. F
example, in a material having a nested or slightly nes
Fermi surface~FS! at some points in the BZ, the resultin
5-2



on
th
ar

l
an
s
le
o

lo
d

n
n
in
ib
m

th

d

l

s

s

F
b-

nt
he
e.

on
tic
e-
-
e

-

il-
h

in
of

il-

e.
the
lu-

elf-
xis.
stic

ng

wn
led
n-
nes
and

he
ied
n

red

one

x-
ere
ent,
ave

e
dary
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response would be enhanced for polarization orientati
which highlight the nested or nearly nested regions of
FS.20 In the case of antiferromagnetic interactions which
strong for momentum transfers of (p,p), the response is
appreciably modified for theB1g channel in two-dimensiona
tetragonal systems.21 The dispersion of these excitations c
then be tracked as a function of light momentum transferq
just as they can via neutron scattering. Thus, in princip
inelastic x-ray scattering systematically tracks the role
correlations and the accompanying FS instabilities by exp
ing the polarization dependence and momentum-transfer
pendence of the resulting spectra.

In this paper, we are interested in carrying out calculatio
in which electronic correlations can be handled exactly i
system which can be tuned through a quantum critical po
The Falicov-Kimball model, which has been used to descr
a variety of phenomenon in binary alloys, rare-earth co
pounds, and intermediate-valence materials,22 contains itin-
erant band electrons and localized electrons, in which
band electrons can hop with amplitude23 t* /2Ad between
nearest neighbors on ad-dimensional hypercubic lattice an
interact via a screened Coulomb interactionU with the local-
ized electrons:

H52
t*

2Ad
(
^ i , j &

ci
†cj1Ef(

i
wi2m(

i
ci

†ci1U(
i

ci
†ciwi ,

~6!

whereci
† ,ci is the spinless conduction-electron creation~an-

nihilation! operator at sitei and wi50 or 1 is a classica
variable for the localized electron number at sitei. Ef andm
control the filling of the localized and conduction electron
respectively. We restrict consideration to half filling^ci

†ci&
5^wi&51/2.

In this model, at half-filling, the system possesses24 a non-
Fermi-liquid metallic ground state forU,Uc and an insulat-
ing state forU.Uc . The single-particle density of state
~DOS! at the Fermi level~FL! vanishes at the criticalUc
'1.5t* and the self-energy develops a pole. AsU ap-
proachesUc from below, a pseudogap develops near the
and forU.Uc the DOS evolves into lower and upper Hu
bard bands separated at the band centers byU. However, the
DOS is independent of temperature~aside from a trivial shift
due to the temperature dependence of the chemical pote
if applicable! and thus it is not possible to determine t
particle dynamics from the single-particle properties alon24

The many-body problem is solved25 by first recognizing
that the self-energy and relevant irreducible vertex functi
are local and then mapping the local objects of the lat
problem onto an effective atomic problem in a tim
dependent dynamical fieldl. In this procedure, we are inter
ested in calculating the local Green’s function, which is d
fined by

G~t!52Trc fT t^e
2bHc~t!c†~0!S~l!&/Z~l! ~7!

for imaginary timest. Here, Trc f denotes the trace over con
duction and localized electrons andTt denotes the time-
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ordering operator. The partition function isZ(l)
5Trc fTt^exp@2bH#S(l)&, with the evolution operatorS de-
fined by

S~l!5expF2E
0

b

dtE
0

b

dt8c†~t!l~t,t8!c~t8!G . ~8!

In these equations the Hamiltonian is the atomic Ham
tonian, which hast* 50 and all time dependence is wit
respect to this atomic Hamiltonian.

In order to determine the Green’s function anywhere
the complex plane, we follow the iterative algorithm
Jarrell:26 ~i! begin with the self-energyS set equal to zero;
~ii ! determine the local lattice Green’s function from the H
bert transform,

G~z!5E der~e!
1

z1m2S~z!2e
, ~9!

with r(e) the noninteracting DOS~a Gaussian here!; ~iii !
extract the effective mediumG0 from G21(z)1S(z)
5G0

21(z); ~iv! calculate the new Green’s function from
G(z)5(12w1)G0(z)1w1 /@G0

21(z)2U#; and ~v! extract
the new self-energy fromS(z)5G0

21(z)2G21(z). Steps
~ii ! through ~v! are repeated until the iterations converg
Sometimes we need to perform weighted averages of
iterations to attain convergence. We usually work with so
tions that are converged to at least one part in 108. Using this
algorithm, we can determine the Green’s function and s
energy either along the imaginary axis or along the real a
These solutions are then employed to calculate the inela
light-scattering response functions.

The inelastic light scattering is calculated by evaluati
the density-density correlation function defined in Eq.~1!.
The Bethe-Salpeter equation for the susceptibility is sho
schematically in Fig. 1. Note that there are two coup
equations, which differ by the number of factors of the i
elastic light-scattering vertex that are present. The solid li
denote dressed Green’s functions in momentum space,
the symbolG denotes the local irreducible charge vertex. T
calculation of the relevant momentum summations impl
in Fig. 1 is nontrivial. The starting point is the determinatio
of the direction in momentum space in which the transfer
momentumq lies. In this contribution we consider two
different directions: ~i! the zone diagonal, where
q5(q,q,q, . . . ,q) and ~ii ! a generalized ‘‘zone
boundary,’’ where q5(0,q,0,q,0,q, . . . ,0,q) or q
5(q,p,q,p,q,p, . . . ,q,p); in all cases we vary 0<q
<p. We choose to call the wave vector in~ii ! the zone
boundary because it reduces to the two-dimensional z
boundary whend52 and it is a nontrivial generalization in
the infinite-dimensional limit. If, on the other hand, we e
amine the true infinite-dimensional zone boundary, wh
only one dimension has a nonzero wave vector compon
then that zone boundary maps onto the zone-center w
vector~since only one of thed-components is nonzero!, and
there is no dispersion. From now on we will refer to th
generalized zone-boundary direction as the zone-boun
direction.
5-3
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When evaluating the density-density correlation functio
we will need to evaluate momentum summations of
form27

(
k

(
j

cosS kj1
qj

2 D 1

z1m2S~z!2e~k!

3
1

z1m2S~z!2e~k1q!
~10!

for the A1g sector and

(
k

(
j

cosS kj1
qj

2 D ~21! j
1

z1m2S~z!2e~k!

3
1

z1m2S~z!2e~k1q!
~11!

for the B1g sector. In the above equations,z denotes a num-
ber in the complex plane. The summation can be evalua
by first rewriting each momentum-dependent Green’s fu
tion as an integral of an exponential function

1

z1m2S~z!2e~k!
52 i E

0

`

dleil[z1m2S(z)2e(k)] ,

~12!

and then expanding each band-structure energy in term
the summation over each component of the wave vec
Then the integral over momentum factorizes into an infin

FIG. 1. Coupled Dyson equations for the inelastic ligh
scattering density-density correlation functions described by
scattering amplitudega . Panel~a! depicts the Dyson equation fo
the interacting correlation function, while panel~b! is the supple-
mental equation needed to solve for the correlation function~the
difference in the two equations is the number ofga factors!. The
symbolG stands for the local dynamical irreducible charge vert
In situations where there are no charge vertex corrections~such as
B1g scattering along the zone diagonal!, the correlation function is
simply given by the first~bare-bubble! diagram on the right-hand
side of panel~a!.
07510
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product of one-dimensional integrals. Each integral need
be expanded just to the order of 1/d, and the resulting terms
can be exponentiated into a form that has a Gaussian de
dence onl. The Gaussian integral can then be evalua
directly. When we do this, we find that the relevant ba
susceptibilities have all of theirq dependence summarized
the form of two scalar parameters

X5 lim
d→`

1

d (
j 51

d

cosqj ~13!

and

XA1g
8 5 lim

d→`

1

d (
j 51

d

cos
qj

2
,

~14!

XB1g
8 5 lim

d→`

1

d (
j 51

d

~21! jcos
qj

2
.

In situations where the summation in Eqs.~11! or ~12!
vanish, the response function is not renormalized by the
reducible charge vertex, and it can be expressed solel
terms of the bare response function~this phenomenon was
first seen for the optical conductivity28!. This never occurs
for the A1g channel, but it does occur for theB1g channel
when q lies on the zone diagonal. In all other cases,
response function is renormalized by the irreducible cha
vertex,29 which takes the form

G~ ivm ,ivn ; in lÞ0!5dmn

1

T

Sm2Sm1 l

Gm2Gm1 l
~15!

on the imaginary axis@ ivm5 ipT(2m11) is the fermionic
Matsubara frequency andin l52ipTl is the bosonic Matsub-
ara frequency#. Here,Sm5S( ivm) is the local self-energy
on the imaginary axis andGm5G( ivm) is the local Green’s
function on the imaginary axis. These vertex corrections
particularly crucial for theA1g symmetry in order to satisfy
Ward identities and particle-number conservation. Note t
the vertex corrections enter for the different symmetry ch
nels away from the zone diagonal because at a finite mom
tum transfer, the different symmetry representations gen
cally mix together.

The strategy for determining the final forms for the r
sponse functions on the real axis is to first calculate the
sponse functions on the imaginary axis and then replace M
subara frequency summations by contour integrals
surround the poles of the Fermi-Dirac distribution functi
f (v)51/@11exp(bv)# with b51/T. Then, the contours are
deformed to be parallel to the real axis, and terms that
pend on the bosonic Matsubara frequency asf (v1 in l) are
replaced by f (v). Finally, we analytically continue the
bosonic Matsubara frequencies from the imaginary to
real axis. This procedure was carried out in detail for t
Raman response30 and will not be repeated here.

The final formulas for the response functions are com
cated integrals of functions that depend on one of the
different bare susceptibilities. These six bare susceptibili
are

e

.

5-4
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x0~v;X,n!52E
2`

`

der~e!
1

v1m2S~v!2e

1

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D , ~16!

x̃0~v;X,n!52E
2`

`

der~e!
1

v1m2S* ~v!2e

1

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D , ~17!

x08~v;X,n!5
X8

2 E
2`

`

der~e!H 1

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D
@v1m2S~v!2e#2

2
2

12X2

12
v1n1m2S~v1n!2Xe

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D
v1m2S~v!2e

J , ~18!

x̃08~v;X,n!5
X8

2 E
2`

`

der~e!H 1

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D
@v1m2S* ~v!2e#2

2
2

12X2

12
v1n1m2S~v1n!2Xe

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D
v1m2S* ~v!2e

J , ~19!

x̄0~v;X,n!5
x0~v;X,n!

2
2

X82

2 E
2`

`

der~e!H 1

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D
@v1m2S~v!2e#3

2
2

12X2

12
v1n1m2S~v1n!2Xe

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D
@v1m2S~v!2e#2

2
1

~12X2!3/2

H F`S v1n1m2S~v1n!2Xe

A12X2 D 12
v1n1m2S~v1n!2Xe

A12X2 F12
v1n1m2S~v1n!2Xe

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D G J
v1m2S~v!2e

J ,

~20!

and

x̃̄0~v;X,n!5
x̃0~v;X,n!

2
2

X82

2 E
2`

`

der~e!H 1

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D
@v1m2S* ~v!2e#3

2
2

12X2

12
v1n1m2S~v1n!2Xe

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D
@v1m2S* ~v!2e#2 2

1

~12X2!3/2

3

H F`S v1n1m2S~v1n!2Xe

A12X2 D 12
v1n1m2S~v1n!2Xe

A12X2 F12
v1n1m2S~v1n!2Xe

A12X2
F`S v1n1m2S~v1n!2Xe

A12X2 D G J
v1m2S* ~v!2e

J .

~21!

In these equations,F (z)5*der(e)/(z2e) is the Hilbert transform of the noninteracting DOS@r(e)5exp(2e2)/Ap#.
`

The A1g andB1g responses both can be written as

075105-5
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x~q,n!5
i

2pE2`

`

dv5 f ~v!

x̄0~v;X,n!1
S~v!2S~v1n!

G~v!2G~v1n!
@x0~v;X,n!x̄0~v;X,n!2x08

2~v;X,n!#

11
S~v!2S~v1n!

G~v!2G~v1n!
x0~v;X,n!

2 f ~v1n!

x̄0* ~v;X,n!1
S* ~v!2S* ~v1n!

G* ~v!2G* ~v1n!
@x0* ~v;X,n!x̄0* ~v;X,n!2x08

2* ~v;X,n!#

11
S* ~v!2S* ~v1n!

G* ~v!2G* ~v1n!
x0* ~v;X,n!

2@ f ~v!2 f ~v1n!#

x̃̄0~v;X,n!1
S* ~v!2S~v1n!

G* ~v!2G~v1n!
@x̃0~v;X,n!x̃̄0~v;X,n!2x̃08

2~v;X,n!#

11
S* ~v!2S~v1n!

G* ~v!2G~v1n!
x̃0~v;X,n! 6 , ~22!
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In the case of theA1g response on the zone diagonalq
5(q,q, . . . ,q), we have X5cosq and X85cosq/2
5A(11X)/2. In the case of theA1g response on the zon
edge, we haveX5(11cosq)/2 andX85(11cosq/2)/25(1
1AX)/2 for q5(0,q,0,q, . . . ,0,q) andX5(cosq21)/2 and
X85cos(q /2)/25A(11X)/2 for q5(q,p,q,p, . . . ,q,p).
In the case of theB1g response on the zone edge, we ha
X5(11cosq)/2 and X85(211cosq/2)/25(211AX)/2
for q5(0,q,0,q, . . . ,0,q) and X5(cosq21)/2 and X85
2cos(q/2)/252A(11X)/2 for q5(q,p,q,p, . . . ,q,p).
The case of theB1g response on the zone diagonal is mu
simpler, because it does not have any renormalizations du
the charge vertex and does not depend onX8. It becomes

xB1g
~q,n!5

i

4pE2`

`

dv$ f ~v!x0~v;X,n!

2 f ~v1n!x0* ~v;X,n!

2@ f ~v!2 f ~v1n!#x̃0~v;X,n!%. ~23!

There is a special point in momentum space, where the
sponse functions become simple again. This occurs at
(p,p, . . . ,p) point, whereX521 andX850. In this case,
x0850 and x̄0 is proportional tox0, so the Bethe-Salpete
equation factorizes, and the susceptibility in Eq.~22! be-
comes proportional to the bare susceptibilityfor any symme-
try. Hence, theA1g response and theB1g response are iden
tical at that point in the BZ. In fact, this result implies th
polarized measurements at the zone-corner point can im
diately show the effects of nonlocal charge fluctuations
the inelastic x-ray response functions, since any deviatio
the A1g signal from theB1g signal arises from effects o
nonlocal charge fluctuations.We feel this may be one of th
cleanest experimental tests for the importance of nonlo
charge fluctuations in a correlated many-body system.
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Finally, a careful examination of Eqs.~16!–~22! shows
that the response function depends only onX82. Since the
only difference for theA1g andB1g responses along the zon
edge~for 21<X<0) is a sign change inX8, the x-ray scat-
tering is identical for theA1g and B1g channels along the
zone edge for21<X<0. It might be difficult to locate the
relevant path in the BZ that would show this behavior in tw
or three dimensions, so examining the zone corner for
effects of nonlocal charge fluctuations still remains the b
option.

IV. RESULTS

A. Correlated metal

Keeping in mind what we expect for weakly correlate
metals, we present the results forU5t* /2 at different tem-
peratures in Figs. 2 and 3 forB1g and A1g inelastic x-ray
scattering, respectively, as a function of the transferred
ergy for different momentum transfers throughout the B
measured by the momentum-space parameterX. Figures 2~a!
and 3~a! refer to scattering along the zone diagonalX
5cosq for the zone-diagonal wave vector q
5(q,q,q, . . . ,q), and Figs. 2~b! and 3~b! refer to scattering
along the generalized zone edge@here, we have q
5(q,0,q,0, . . . ,q,0) for 1>X5(11cosq)/2>0 and q
5(p,q,p,q, . . . ,p,q) for 0>X5(211cosq)/2>21].
The curves have been shifted vertically for clarity. The lo
est set of curvesX51 corresponds to Raman scattering w
optical photons.30

For theB1g channel~Fig. 2!, a well-defined low-energy
Fermi-like coherence peak~below U50.5t* ) moves to
higher energies and broadens as one moves away from
zone center (X51), as would be expected of Landau dam
ing via particle-hole creation at largerq ~Refs. 18 and 31!
~recall the Falicov-Kimball model is not a Fermi liquid whe
UÞ0, but can be viewed as a ‘‘dirty’’ Fermi liquid for sma
5-6



in
.
f
r-
hi

y
he
om

n
r

m
s.

en

ar

mb
as-
p to
mb
on

e

gy
-
-

at
to

een
ght,
pec-
m-
po-
se

-

the
ran-

e.
po
es

e
nd

g
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enoughU). In addition, the peak sharpens with decreas
temperature as the channels for Landau damping are lost
particular signature can be seen at the energy transfer oU,
since it falls within the line shape of the Fermi-like cohe
ence peak, and thus the role of electronic correlations, w
present, are obscured by the larger Landau damping.

In Fig. 4 we plot the position and width of the low-energ
peak for theB1g channel for momentum transfers along t
BZ diagonal. The peak moves to higher frequencies fr
;0.25t* for small momentum transfersX,1 and reaches a
maximum;t* for momentum transfers slightly greater tha
(p/2,p/2, . . . ) before softening as the BZ corne
(p,p, . . . ) isapproached. In fact, the peak position is co
parable toU for large momentum transfers in all direction
The width of the peak grows continually with increasingq as
more and more phase space is created by which charge
citations may relax. The width initially grows likeq2 for

FIG. 2. Inelastic x-ray scattering response forU50.5t* in the
B1g channel along~a! the BZ diagonal and~b! along the zone edge
for the half-filled Falicov-Kimball model on a hypercubic lattic
The solid, dotted, short-dashed, and long-dashed curves corres
to temperaturesT50.1, 0.25, 0.5, and 1.0, respectively. The curv
have been offset for clarity.

FIG. 3. Inelastic x-ray scattering responseU50.5t* in the A1g

channel along~a! the BZ diagonal and~b! along the zone edge. Th
solid, dotted, short-dashed, and long-dashed curves correspo
temperaturesT50.1, 0.25, 0.5, and 1.0, respectively.
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momentum transfers away from the BZ center and th
slows its growth rate farther from the zone center~recall that
X5cosq so an initialq2 dependence translates into a line
dependence onX).

An important difference is that theA1g results have no
low-energy spectral weight forq50 as a result of particle-
number conservation. In a model with long-range Coulo
interactions, the only excitation would be a high-energy pl
mon which is soft for uncharged systems, but is pushed u
higher energies via the Higgs mechanism by the Coulo
interaction. In our short-range model, a mild peak appears
the energy scale of bothU and the bandwidth at the zon
center~we cannot differentiate which one dominates!. The
vertex corrections do not completely remove low-ener
scattering for any finite value ofq, and the low-energy spec
tral weight grows for increasingq either along the zone di
agonal or the zone edge. For largeq, theA1g spectra have a
temperature dependence similar to theB1g response, domi-
nated by particle-hole excitations. In fact, theA1g and B1g
responses are identical at the (p,p, . . . ,p) point X521
due to the local approximation. Any variation in the signal
the zone corner in different symmetry channels is due
nonlocal many-body correlations.

For low q however ~such asX50.5), the temperature
dependence is nonmonotonic due to a competition betw
increased vertex corrections, which deplete spectral wei
and decreased particle-hole damping, which aggregates s
tral weight into the Fermi-like coherence peak as the te
perature is reduced. It is important to note that for an un
larized~partially polarized! measurement, the x-ray respon
is a ~weighted! superposition of theB1g and A1g spectra.
However, the spectra at smallq in a metal would largely
have contributions from theB1g channel due to the signifi
cant phase-space reduction in theA1g channel.

B. Near critical dynamics

Now we turn to our results for a near critical value ofU
51.5t* 'Uc , where the density of states vanishes at
Fermi level and the system undergoes a metal-insulator t

nd

to

FIG. 4. The position~circles! and the width~diamonds! of the
low-energy peak in theB1g channel for momentum transfers alon
the BZ diagonal forT50.1t* as shown in Fig. 2.
5-7
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sition ~our choice forU lies just on the insulating side of th
metal-insulator transition!. We plot in Figs. 5 and 6 the re
sults for theB1g andA1g channels, respectively, for the sam
temperature ranges as in the previous plots. The effec
electronic correlations is clearly visible. For both theB1g and
the A1g spectra, two peaks become discernable at smalq:
the low-energy peak~similar to the one observed for smalle
values ofU) and a nondispersive high-energy peak~at an
energy of roughlyU corresponding to transitions between t
lower and the upper Hubbard band!. Indeed, the results a
large q are more similar to the smallU results, since the
Landau damping pushes the low-frequency peak into
high-frequency peak and further smears both peaks. Ag
the low-energy peak is removed near the zone center for
A1g channel, but in this case the charge-transfer peak~at a
frequency nearU) remains.

It is important to note that even though the system is n
critical, the low-energy spectral weight is visible, particula
in the B1g channel. We now focus on the spectral weight
this region as a function of temperature, shown in Fig. 7
this low-frequency region, one can clearly see for theB1g
channel that the low-energy spectral weight increases w
increasing temperature throughout the BZ. This is m
clearly seen atq50. For theA1g channel, the same behavio
is masked by the role of vertex corrections which reduce
spectral weight for momentum transfers near the BZ cen
Nevertheless, the growth of intensity with increasing te
perature is clearly seen in both channels. The growth is
ticularly clear at low-frequency transfers, and for increas
transfers the effect vanishes and crosses over at larger
quencies to a region where the spectral weight deplete
temperature is increased. The point separating these reg
occurs at a crude isosbestic point near;0.5t* , where the
spectra are roughly independent of temperature. The isos
tic point becomes less well defined for momentum trans
away from the zone center, and therefore it is most clea
observable in Raman measurements in theB1g channel. As
the temperature is increased further, the isosbestic beha
disappears.

FIG. 5. Inelastic x-ray scattering responseU51.5t* in the B1g

channel along~a! the BZ diagonal and~b! along the zone edge. Th
solid, dotted, short-dashed, and long-dashed curves correspo
temperaturesT50.1, 0.25, 0.5, and 1.0, respectively.
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C. Insulator

Turning to the insulating phase, our results forU52t*
for the B1g and A1g channel are shown in Figs. 8 and
respectively. Clearly, two features can be resolved in both
B1g andA1g channel: a small, dispersive low-energy peak
frequencies;t* and a large, dispersionless charge-trans
peak;U well separated from the low-energy peak. Here,
see more clearly the development of the transfer of spec
weight from low frequencies to higher frequencies as te
perature is lowered, with a more clearly defined isosbe
point separating the low- and high-energy transfers,
shown in Fig. 10.

The low-energy depletion of spectral weight and co
comitant increase of spectral weight at high energies ab
the isosbestic point~as T is reduced to zero! was recently
discussed in Ref. 14 forU54t* ~which lies deep on the
insulating side of the transition! where the isosbestic point i
more clearly observed. The low-energy feature in the in
lating phase is determined by thermally generated dou

to

FIG. 6. Inelastic x-ray scattering responseU51.5t* in the A1g

channel along~a! the BZ diagonal and~b! along the zone edge. Th
solid, dotted, short-dashed, and long-dashed curves correspo
temperaturesT50.1, 0.25, 0.5, and 1.0, respectively.

FIG. 7. Detail of the low-energy inelastic x-ray scattering r
sponseU51.5t* along the zone diagonal for~a! the B1g channel
and~b! theA1g channel for the temperatures shown in Figs. 5 and
5-8
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INELASTIC X-RAY SCATTERING AS A PROBE OF . . . PHYSICAL REVIEW B 68, 075105 ~2003!
occupancies which become unpopulated at lower temp
ture. The high-energy peak reflects the energy scale for
citations across the Mott gap and is relatively dispersion
due to the local nature of the correlations. In contrast,
low-energy feature is a consequence of thermally gener
double occupancies which open a low-energy band~up to
energies ;t* ) able to scatterx rays. The low-energy pea
disperses due to Landau damping by the thermally gener
excitations, created in greater numbers at largerq. These
excitations are frozen out for decreasing temperature, and
low-energy intensity disappears. Only scattering across
Mott gap remains at an energy transfer ofU. The charge-
transfer peak for allq broadens for increasing temperatu
while the low-energy peak gains intensity from zero as te
perature is increased, particularly in theB1g channel. As a
consequence, bothB1g andA1g possess a nondispersive iso
bestic point—a frequency at which the spectra are temp
ture independent—aroundn;U/2. This result agrees with

FIG. 8. Inelastic x-ray scattering responseU52t* in the B1g

channel along~a! the BZ diagonal and~b! along the zone edge. Th
solid, dotted, short-dashed and long-dashed curves correspo
temperaturesT50.1, 0.25, 0.5, and 1.0, respectively.

FIG. 9. Inelastic x-ray scattering responseU52t* in the A1g

channel along~a! the BZ diagonal and~b! along the zone edge. Th
solid, dotted, short-dashed, and long-dashed curves correspo
temperaturesT50.1, 0.25, 0.5, and 1.0, respectively.
07510
a-
x-
s
e
ed

ed

he
e

-

a-

our previous results forU54 in which the two peaks are
further separated and the isosbestic point is more clearly
served.

We note that even in the insulating case there is no sp
tral weight at small energy transfers for theA1g channel.
Thus we note that regardless of the strength of the corr
tions, the Raman response (q50) and the inelasticx-ray
response at smallq should be dominated by theB1g re-
sponse. This can be an important diagnostic tool for inve
gating the nature of charge dynamics in different regions
the BZ due to the projection of theB1g scattering amplitude
form factors compared toA1g .

V. SUMMARY AND DISCUSSION

In summary, we have constructed a formally exact the
for nonresonant x-ray scattering in a system which can
tuned across a quantum metal-insulator transition. We
cused on the polarization and momentum-transfer dep
dence of the resulting spectra as a way of discerning the
of electron correlations. In particular, the way in which t
spectral weight is transferred over different frequency
gions as a function of temperature can shed light on
strength of the electronic correlations, and the moment
dependence of the observed spectra can be used to dete
‘‘hot regions’’ on the FS. In general, the temperature a
polarization dependence of the spectrum would assist in
interpretation of observed peaks in the x-ray spectrum
correlated insulators for example.

In addition, we have pointed out a number of featur
which reflect the nature of the electronic correlations. O
important finding concerns the polarization dependence
the results for momentum transfers at the BZ corn
(p,p, . . . ,p). In a theory in which the correlations ar
purely local, we find that the response function should
identical at this point for bothA1g andB1g scattering geom-
etries and that any difference can be attributed to the imp
tance of nonlocal correlations~indeed, they are identical fo
21<X<0 along the generalized zone boundary!. In addi-
tion, we have pointed out that for lowq the full response is

to

to

FIG. 10. Detail of the low-energy inelastic x-ray scattering r
sponseU52t* along the zone diagonal for~a! theB1g channel and
~b! the A1g channel for the temperatures shown in Figs. 8 and 9
5-9
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DEVEREAUX, McCORMACK, AND FREERICKS PHYSICAL REVIEW B68, 075105 ~2003!
dominated by theB1g channel which projects out particle
hole excitations. Thus in this limit, the excitations can
directly probed and tracked as a function of temperature

There is currently limited experimental data concern
the polarization and/or temperature dependence of the
served spectra in either correlated metals or insulators
thus many of our predictions remain open to experimen
verification. At this stage, current experiments have focu
on collective excitations such as the plasmon3 or orbiton11 or
excitations across a Mott gap in correlated insulators.5–7,10

Our theory would predict several effects which could se
as a fingerprint of the role of electronic correlations in bo
correlated metals and insulators by a systematic study of
dependence on temperature and polarization orientation
particular, one could use x-ray scattering to elucidate e
tron dynamics near and through a quantum critical me
insulator transition.

Our theory does not address the role of resonant scatte
and the connection to multiband systems. To capture re
nance effects, detailed information is needed about the
ergy separation of the various bands as well as the ma
elements which couple the valence and conduction bands
light scattering. For a Mott insulator this would include res
nant transitions between the upper and lower Hubbard ba
as well as between excitons. Recently, this has been
dressed via exact diagonalization studies16 and a spin-
polaron approach,17 and its formulation for the Falicov
Kimball model is presently under investigation by us.
more realistic theory for resonant inelastic x-ray scatter
should also include resonant transitions in which the d
core hole~created by the incident x-ray! decays via Auger
processes and must also include the strong perturbing e
of the core hole on any intermediate states~such as band
.
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states or collective modes of the system such as plasmon
magnons! accessible to scattering transitions.13

We have also chosen to focus on the paramagnetic m
to paramagnetic-insulator transition. The Falicov-Kimb
model, however, possesses phases containing charge
and phase separation. It would be extremely useful to ex
ine the excitations in the ordered phases via light scatte
in this model. More generally, dynamical mean-field theo
can be used to address the excitations in the ordered pha
this model as well as the Hubbard model.

We conclude with a discussion on the applicability of o
results for the limit of large dimensions to finite-dimension
systems. One important consequence of lower dimens
would be that the self-energy and irreducible vertex funct
will not be strictly local and the momentum dependence m
crucially alter not only the formalism but also the spect
evolution of the response as correlations are changed
doping. Particularly, the spectra might show dispersive f
tures which are much more complex than the ones we
served in these calculations. We again note that the inela
x-ray spectra for momentum transfers at the BZ cor
would be very useful to quantify the importance of the
nonlocal correlations. One should note, however, that
‘‘roughness’’ of the Fermi surface actually simplifies as t
dimensionality is lowered, so the infinite-d results already
include many complex geometrical effects of the infinit
dimensional hypercubic Fermi surface.
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