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t. The anomalous properties of the YbInCu4 family of intermetalli
 
ompoundsare dis
ussed and the experimental data are 
ompared with the dynami
al mean �eldtheory (DMFT) of Fali
ov-Kimball model. We show that the DMFT provides a qualita-tive des
ription of the valen
e-
hange transition and high-temperature behavior of thesesystems.1. Introdu
tion to Valen
e-Change MaterialsYb-based intermetalli
 
ompounds have an interesting isostru
tural valen
e-
hange transition (1, 2, 3, 4, 5, 6). Here, we brie
y des
ribe the most
hara
teristi
 features of these systems, taking Yb1�xYxInCu4 as an ex-ample, and show that the Fali
ov-Kimball model provides a qualitativedes
ription of the experimental data.At zero doping and ambient pressure the properties of YbInCu4 aredominated by a �rst-order valen
e-
hange transition at about 40 K. Thevalen
e of the Yb ions 
hanges from Yb3+ above Tv to Yb2:85+ belowTv (1, 7), where Tv is the transition temperature. and the latti
e expandsby about 5 %. The 
rystal stru
ture remains in the C15(b) 
lass andthe volume expansion estimated from the atomi
 radii of the Yb3+ andYb2+ ions is 
ompatible with the valen
e 
hange estimated from LIII -edgedata (1, 8). Spe
i�
 heat data shows a �rst-order transition at Tv with anentropy 
hange �S ' R ln 8 
orresponding to a 
omplete loss of magneti
degenera
y in the ground state (4). Neutron s
attering does not provide anyeviden
e for long range order below Tv (9). Y-doping redu
es Tv until a 
rit-i
al 
on
entration of 15 % of Y ions is rea
hed, where the high-temperaturephase extends down to T=0 K (5, 6, 10). The experimental results for the
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2resistivity, sus
eptibility and thermopower (6) of Yb1�xYxInCu4 are shownin Fig. 1.

Figure 1. Panel (a) shows the resistivity and the magneti
 sus
eptibility ofYbxY1�xInCu4 as fun
tion of temperature for various 
on
entrations of Y ions (6).Note, all the \high-temperature" data 
an be 
ollapsed onto a single universal 
urve, bynormalizing the sus
eptibility with respe
t to an e�e
tive Yb-
on
entration (not shown).Panel (b) shows the thermopower of YbxY1�xInCu4 as a fun
tion of temperature forvarious 
on
entrations of Y ions (6).The low-temperature phase (T � Tv) shows anomalies typi
al of anintermetalli
 
ompound with a 
u
tuating valen
e. The ele
troni
 spe
i�
heat and the sus
eptibility are enhan
ed (4); the ESR data (11) also indi-
ates a large density of states at the Fermi level EF . The ele
tri
al resistan
eand the Hall 
onstant are small and metalli
, and the low-temperature slopeof the thermoele
tri
 power is large (6). The opti
al 
ondu
tivity is Drudelike, with an additional stru
ture in the mid-infrared range whi
h appearsquite suddenly at Tv (3), indi
ating a mixing of the f-states with the 
on-du
tion band. Neither the sus
eptibility, nor the resistivity (6), nor the Hall
onstant (2) show any temperature dependen
e below Tv , i.e., the system
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3behaves as a fermi liquid with a 
hara
teristi
 energy s
ale TFL � Tv. Themagneti
 moment of the rare earth ions is quen
hed in the ground stateby the f-d hybridization but the onset of the high-entropy phase 
annotbe explained by the usual Anderson model in whi
h the low- and high-temperature s
ales are the same and the spin degenera
y is not expe
tedto be re
overed below TFL. In these valen
e-
hange systems, however, thef -moment at is re
overed at Tv � TFL.The high-T phase that sets in at Tv is also anomalous. In doped systems,the sus
eptibility data above Tv 
an be represented by a single universal
urve, provided one s
ales the data by an e�e
tive 
on
entration of magneti
f -ions, whi
h is smaller than the nominal 
on
entration of f -ions. Thefun
tional form of the magneti
 response agrees well with the \single-ion"
rystal �eld (CF) theory for all values of the �eld. The Yb ions seem tobe in the stable 3+ 
on�guration with one f -hole and with the magneti
moment 
lose to the free ion value gLpJ(J + 1)�B = 4:53�B (gL = 8=7 isthe Land�e fa
tor and J = 7=2 is the angular momentum of the 4f13 hole).The dynami
al sus
eptibility obtained from neutron s
attering data (12) istypi
al of isolated lo
al moments, with well resolved CF ex
itations(13).The resistivity of Yb1�xYxInCu4 alloys exhibits a weak maximum andthe thermopower has a minimum above 100 K but neither quantity showsmu
h stru
ture at low temperatures, where the sus
eptibility drops belowthe single-ion CF values. The dis
ontinuity of the thermoele
tri
 power atthe valen
e transition is a trivial 
onsequen
e of the di�erent thermoele
tri
properties of the two phases: the thermopower of the valen
e-
u
tuatingphase has an enhan
ed slope and grows rapidly up to Tv, where it suddenlydrops to values 
hara
teristi
 of the high-temperature phase. The resistivityis not 
hanged mu
h by a magneti
 �eld up to 30 T (14). In typi
al Kondosystems, on the other hand, one expe
ts a logarithmi
 behavior on the s
aleT=TK and a large negative magnetoresistan
e. Here, despite the presen
eof the well de�ned lo
al moments, there are no Kondo-like anomalies. TheHall 
onstant of the x = 0 
ompound is large and negative in the high-temperature phase, typi
al of a semi-metal (2); the opti
al 
ondu
tivity (3)shows a pronoun
ed maximum of the opti
al spe
tral weight at a 
harge-transfer peak near 1 eV and a strongly suppressed Drude peak. The high-temperature ESR data for Gd3+ embedded in YbInCu4 resemble thosefound in integer-valen
e semi-metalli
 or insulating hosts (15).The hydrostati
 pressure and the magneti
 �eld give rise, like the tem-perature and the doping, to strong and often surprising e�e
ts. The 
riti
altemperature de
reases with pressure (14) but the data 
annot be explainedwith the Kondo volume 
ollapse model (4). We mention also that dopingthe Yb sites with Lu3+ ions (5) redu
es Tv despite the fa
t that Lu has asmaller ioni
 radius than Yb or Y; doping the In sites by smaller Ag ions
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4enhan
es Tv in YbIn1�xAgxCu4 (8, 16) without 
hanging appre
iably thelatti
e parameter. Thus, the e�e
ts of doping 
an not be explained in termsof a 
hemi
al pressure. An external magneti
 �eld of a 
riti
al strengthH
(T ) destabilizes the low-temperature phase and indu
es a metamagneti
transition whi
h 
an be seen in the magnetoresistan
e and the magnetiza-tion data (4). The experimental values of H
(T = 0) and Tv(H = 0) are ofthe same order of magnitude.2. Theoreti
al des
ription and the DMFT solutionA qualitative des
ription of the properties des
ribed above is provided bythe Fali
ov-Kimball (FK) model (17) whi
h takes into a

ount the intera
-tion between a 2{fold degenerate 
ondu
tion band and a latti
e of Yb and Yions. Ea
h latti
e site 
an be o

upied either by a Yb2+, Yb3+ or Y 3+ ion.The Yb2+ ion has a full f-shell and is non-magneti
, the Yb3+ is magneti
with one f-hole in a J=7/2 spin-orbit state, and the Y3+ is non-magneti
,with one additional hole with respe
t to the Yb2+ ion. The number of Y3+ions is �xed in ea
h alloy, while the 
on
entration of Yb3+ and Yb2+ ions isa thermodynami
 variable. The f-holes are lo
alized and the state of a givenYb ion 
an not 
hange in time but the relative number of Yb2+ and Yb3+
hanges due to thermodynami
 
u
tuations. The 
ondu
tion ele
trons 
anhop between nearest-neighbor sites on the D-dimensional latti
e, with ahopping matrix�tij = �t�=2pD; we 
hoose a s
aling of the hopping matrixthat yields a nontrivial limit in in�nite-dimensions (18). We assume thatthe magneti
 f -hole on Yb3+ and the spinless hole on Y3+ intera
t withthe holes in the 
ondu
tion band by a Coulomb repulsion Uf and UY ,respe
tively. Averaging over all possible random distributions of Yb2+ ,Yb3+ and Y3+ ions restores the translational invarian
e and leads to theFali
ov-Kimball model for the latti
e Yb-Y ions,HFK = H0d +Hf +HY +HU ; (1)where H0d =Xij;�(�tij � �Æij)dyi�dj�; (2)Hf =Xi;� (Ef � �)f yi�fi�; (3)HY =Xi (EY � �Y )
yi 
i; (4)and HU = Uf Xi;�� dyi�di�f yi�fi� + UY Xi;� dyi�di�
yi 
i: (5)
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5Spin-1/2 
ondu
tion holes are 
reated or destroyed at site i by dyi� or di�, the8-fold degenerate lo
alized f-holes are 
reated or destroyed at site i by f yi� orfi�, and the spinless Y-hole is 
reated or destroyed at site i by 
yi or 
i. Weuse � and � labels to denote the angular momentum state of the d- and f -holes, respe
tively. The d-, f- and Y-number operators at ea
h site are nid =P� nid�, nif =P� nif�, and niY , respe
tively, and we have the lo
al 
onstraintnif+niY � 1. The Y-doping redu
es the number of f-holes in the 
ondu
tionband and provides additional Coulomb s
attering for 
ondu
tion-holes. Fora given 
on
entration x of Y ions, the 
hemi
al potential � is employed to
onserve the total number of remaining d- and f-parti
les, nd(T )+nf(T ) =ntot�x. In the presen
e of a magneti
 �eld the magneti
 degenera
y of thef-holes is lifted and the Hamiltonian (1) is supplemented by a Zeeman term.Using the basis that diagonalizes simultaneously the zero-�eld Hamiltonianand J7=2z 
omponent of the angular momentum operator, we 
an write,HZ = gd�BHXi� �dyi�dj� + gf�BHXi� �f yi�fi�; (6)where gd and gf are the g-fa
tors. The numeri
al 
al
ulations are per-formed for a hyper-
ubi
 latti
e with a Gaussian nonintera
ting density ofstates �(�) = exp[��2=t�2℄=(p�t�); and t� is taken as the unit of energy(t� = 1). We 
onsider only the homogeneous phase, where all quantities aretranslationally invariant.The DMFT redu
es an in�nitely-dimensional FK latti
e to the problemof an atomi
 d-state 
oupled to an atomi
 f-state by the same Coulombintera
tion as on the latti
e (19), and perturbed by an external time-dependent �eld, �(�; � 0). The �eld is taken in su
h a way that the lo
ald-ele
tron Green's fun
tion of the latti
e 
oin
ides with the Green's fun
tionof the atomi
 d-state, G�lo
(z) = G�at(z). The atomi
 problem is solved byde�ning the generating fun
tional (the partition fun
tion of the FK atom)in the intera
tion representation (20),Zat(�; �) = Trdf
 hT�e��HatS(�)i ; (7)where the statisti
al sum runs over all possible quantum states of the systemand depends on ��(�; � 0) for �; � 0 2 (0; �). The Hamiltonian of the FK atom,Hat = ��X� dy�d� + (Ef � �)X� f y�f� + (EY � �Y )
y
+ UfX�� dy�d�f y�f� + UY X�� dy�d�
y
; (8)
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6de�nes the time evolution of the operators, and the external �eld de�nesthe time-evolution operator for the state ve
tors,S(�) = T�e� R �0 d� R �0 d� 0P� ��(�;� 0)dy�(�)d�(� 0): (9)In the presen
e of the magneti
 �eld, we add to (8) a Zeeman term that isobtained from (6) in an obvious way. The Hilbert spa
e 
an be de
omposedinto invariant subspa
es with respe
t to nf and n
, and the matrix elementsin (7) 
an be 
al
ulated within the nf -invariant subspa
e by repla
ingP� f y�f� in Hat by its eigenvalue (0 or 1) and setting n
 = 0. Within then
-invariant subspa
e we use nf = 0 and n
 = 1. This gives,Zat(�; �) = Z0(�; �) + ZfZ0(�� Uf ; �) + ZY Z0(�� UY ; �); (10)where, Zf =P� e��(E(7=2)� ��) and ZY = e��(EY ��Y ) are the partition fun
-tions of the Yb3+ and Y3+ holes de
oupled from the d-states, and Z0(�; �)is the partition fun
tion of the Uf = UY = 0 atomi
 d-state 
oupled to the�-�eld only. We have, Z0(�; �) =Y� Z�0 (�; �); (11)where Z�0 (�; �) = Trd hT�e��H�0 S(�; ��)i : (12)and H�0 = �X� (�� gd�BH)dy�d�: (13)To 
al
ulate Z�0 (�; �) we introdu
e the d-ele
tron propagator for this sim-pli�ed atomi
 problem, G�0 (�; � 0) = � Æ lnZ�0Æ��(� 0; �) ; (14)whi
h is determined by the equations of motion (EOM) and the boundary
ondition G�0 (�; � 0) = G�0 (� + �; � 0). The EOM's redu
e, in the Matsubararepresentation, to a set of de
oupled linear algebrai
al equations, su
h that[G�0n℄�1 = [g�0n℄�1 � ��n, where [g�0n℄�1 = i!n + � � ��BgdH is the prop-agator of the trivial Uf = UY = � = 0 atomi
 d-state. Using Z�0 (�; �) =det j[G�0 ℄�1j and det j[g�0 ℄�1j = 1 + exp (�� ��BgdH), we 
an write thepartition fun
tion of the Uf = UY = 0, � 6= 0 atomi
 model as,Z�0 (�; �) = (1 + e�(����BgdH))Yn (1� ��n g�0n): (15)
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7The partition fun
tions in the nf = 1 (nY = 0) and the nY = 1 (nf = 0)subspa
es are obtained from the nf = nY = 0 solution by repla
ing � inZ�0 (�; �) by �� Uf and �� UY , respe
tively.The fully renormalized Green's fun
tion of the FK atom is, by de�nition,G�(�; � 0) = � 1Zat(�; �) ÆZat(�; �)Æ��(� 0; �) ; (16)and 
an be 
al
ulated using Eqs.(10) and (14). In Matsubara representation,where G�0n = �Æ lnZ�0 =Æ��n, we obtainG�at(i!n) = N0G�0 (i!n) + Nf[G�0 (i!n)℄�1 � Uf ;+ NY[G�0 (i!n)℄�1 � UY ; (17)where N0 = Z0(�; �)=Zat, Nf = ZfZ0(��Uf ; �)=Zat, and NY = ZYZ0(��UY ; �)=Zat are the respe
tive average numbers of the Yb2+, Yb3+ and Y3+ions in a Y-doped system. The 
on
entration of Y-ions, NY = x, is kept
onstant at ea
h temperature. For a given 
on
entration Y ions we 
al
ulateG�at(i!n) usingN0 = 1�Nf�x. Sin
eG�0 is the solution of the Uf = UY = 0,� 6= 0 problem, the self energy of the full atomi
 problem is given by theDyson equation, �� = [G�0 ℄�1 � [G�at℄�1: (18)The solution for the FK latti
e is de�ned by � su
h thatG�at(i!n) = Z �(�)i!n + �+ ��BgdH � ��(z) � �d�: (19)The equations (17) and (18), together with the expressions (10) and (15)for the partition fun
tion, and the self-
onsisten
y 
ondition (19), 
an besolved by iteration. One starts from some trial self energy and �nds G�atusing Eq.(19). Then, one �nds G�0 from Eq.(18), �nds Zat(�; �) from (10)and (15), 
al
ulates G�at by fun
tional derivatives, re
al
ulates �� using(18), and 
ontinues until the �xed point is rea
hed. On
e the numbers N0and Nf are obtained we 
an iterate (17), (18) and (19) on the real axis and�nd the retarded quantities. In what follows, we use the DMFT to 
al
ulatethe thermodynami
 and transport properties of the model 
orrsponding tothe Yb1�xYxInCu4 alloys.3. Numeri
al resultsThe 
al
ulations are performed assuming that doping by Y3+ ions removesholes from the 
ondu
tion band. In an undoped sample the total numberof 
ondu
tion holes and the holes on the Yb3+ ions is nd + nf = 1:5,while for a 
on
entration x of Y ions we assume nd + nf = 1:5 � x. The
zlati
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8parameter spa
e of the model is very large and a quantitative 
omparisonwould require a �ne-tuning of the parameters. Here, we only show theresults for stati
 
orrelation fun
tions obtained for Uf = UY = 2 t�, andEf = �0:6 t�. Panel (a) of Fig.2 shows the e�e
t of temperature and doping
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Figure 2. Panel (a) shows lo
alized ele
tron �lling for eightfold degenerate dopedFali
ov-Kimball model with Uf = UY = 2 t�, Ef = �0:6 t�, and various doping levels x.Panel (b) shows spin sus
eptibility normalized to the nominal 
on
entration of Yb ionsin a Yb1�xYxInCu4 alloy.on the average 
on
entration of Yb3+ ions. Panel (b) shows the f-ele
tron
ontribution to the spin sus
eptibility, whi
h vanishes below Tv, and isCurie-like for T � Tv. Above the transition temperature, de�ned by the
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9in
e
tion point of the sus
eptibility 
urves, the 
on
entration of Yb3+ ionsbe
omes signi�
ant but the e�e
tive Curie 
onstant de
reases with doping.The e�e
t of doping and temperature on transport properties is shown in
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Figure 3. Panel (a) shows DC resistivity of the Fali
ov-Kimball model for the sameparameters as in Fig.(2.) Panel (b) shows thermopower.Fig. 3. Panel (a) shows that the resistivity of an undoped (x = 0) samplestarts from zero and be
omes large around Tv, where the 
on
entration ofYb3+ ions is large. In doped (x > 0) samples, the residual resistivity is�nite. At high temperatures the resistivity of all samples has a maximum(not shown here). The relative importan
e of the doping diminishes forT � Tv. The thermopower results are shown in panel (b), using a 10 timeslarger temperature s
ale than in panel (a), to reveail the minimum and asign-
hange. The theoreti
al results shown in Figs. 2 and 3 have a number
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10of qualitative features that one �nds in the experimental data. A detailed
omparison will be published elsewhere.A
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