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Abstract. The anomalous properties of the YbInCuy family of intermetallic compounds
are discussed and the experimental data are compared with the dynamical mean field
theory (DMFT) of Falicov-Kimball model. We show that the DMFT provides a qualita-
tive description of the valence-change transition and high-temperature behavior of these
systems.

1. Introduction to Valence-Change Materials

Yb-based intermetallic compounds have an interesting isostructural valence-
change transition (1, 2, 3, 4, 5, 6). Here, we briefly describe the most
characteristic features of these systems, taking Ybi_,Y,InCuy as an ex-
ample, and show that the Falicov-Kimball model provides a qualitative
description of the experimental data.

At zero doping and ambient pressure the properties of YbInCuy are
dominated by a first-order valence-change transition at about 40 K. The
valence of the Yb ions changes from Yb3T above T, to Yb%®* below
T, (1, 7), where T), is the transition temperature. and the lattice expands
by about 5 %. The crystal structure remains in the C15(b) class and
the volume expansion estimated from the atomic radii of the Yb3t and
Yb?t jons is compatible with the valence change estimated from Ljrr-edge
data (1, 8). Specific heat data shows a first-order transition at 7; with an
entropy change AS ~ R In 8 corresponding to a complete loss of magnetic
degeneracy in the ground state (4). Neutron scattering does not provide any
evidence for long range order below T;, (9). Y-doping reduces T, until a crit-
ical concentration of 15 % of Y ions is reached, where the high-temperature
phase extends down to T=0 K (5, 6, 10). The experimental results for the
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resistivity, susceptibility and thermopower (6) of Yb_,Y,InCuy are shown
in Fig. 1.
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Figure 1. Panel (a) shows the resistivity and the magnetic susceptibility of
Yb,Y1-zInCus as function of temperature for various concentrations of Y ions (6).
Note, all the “high-temperature” data can be collapsed onto a single universal curve, by
normalizing the susceptibility with respect to an effective Yb-concentration (not shown).
Panel (b) shows the thermopower of Yb,Y;_,InCuy4 as a function of temperature for
various concentrations of Y ions (6).

The low-temperature phase (T' < T,) shows anomalies typical of an
intermetallic compound with a fluctuating valence. The electronic specific
heat and the susceptibility are enhanced (4); the ESR data (11) also indi-
cates a large density of states at the Fermi level E'r. The electrical resistance
and the Hall constant are small and metallic, and the low-temperature slope
of the thermoelectric power is large (6). The optical conductivity is Drude
like, with an additional structure in the mid-infrared range which appears
quite suddenly at T, (3), indicating a mixing of the f-states with the con-
duction band. Neither the susceptibility, nor the resistivity (6), nor the Hall
constant (2) show any temperature dependence below T, i.e., the system
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behaves as a fermi liquid with a characteristic energy scale Try, > T,. The
magnetic moment of the rare earth ions is quenched in the ground state
by the f-d hybridization but the onset of the high-entropy phase cannot
be explained by the usual Anderson model in which the low- and high-
temperature scales are the same and the spin degeneracy is not expected
to be recovered below Try. In these valence-change systems, however, the
f-moment at is recovered at T, < Trr,.

The high-T phase that sets in at T}, is also anomalous. In doped systems,
the susceptibility data above T, can be represented by a single universal
curve, provided one scales the data by an effective concentration of magnetic
f-ions, which is smaller than the nominal concentration of f-ions. The
functional form of the magnetic response agrees well with the “single-ion”
crystal field (CF) theory for all values of the field. The Yb ions seem to
be in the stable 3+ configuration with one f-hole and with the magnetic
moment close to the free ion value gr\/J(J + 1)up = 4.53up (g = 8/7 is
the Landé factor and J = 7/2 is the angular momentum of the 4f'3 hole).
The dynamical susceptibility obtained from neutron scattering data (12) is
typical of isolated local moments, with well resolved CF excitations(13).

The resistivity of Yb;_,Y,InCu, alloys exhibits a weak maximum and
the thermopower has a minimum above 100 K but neither quantity shows
much structure at low temperatures, where the susceptibility drops below
the single-ion CF values. The discontinuity of the thermoelectric power at
the valence transition is a trivial consequence of the different thermoelectric
properties of the two phases: the thermopower of the valence-fluctuating
phase has an enhanced slope and grows rapidly up to T, where it suddenly
drops to values characteristic of the high-temperature phase. The resistivity
is not changed much by a magnetic field up to 30 T (14). In typical Kondo
systems, on the other hand, one expects a logarithmic behavior on the scale
T/Tk and a large negative magnetoresistance. Here, despite the presence
of the well defined local moments, there are no Kondo-like anomalies. The
Hall constant of the z = 0 compound is large and negative in the high-
temperature phase, typical of a semi-metal (2); the optical conductivity (3)
shows a pronounced maximum of the optical spectral weight at a charge-
transfer peak near 1 eV and a strongly suppressed Drude peak. The high-
temperature ESR data for Gd3* embedded in YbInCu, resemble those
found in integer-valence semi-metallic or insulating hosts (15).

The hydrostatic pressure and the magnetic field give rise, like the tem-
perature and the doping, to strong and often surprising effects. The critical
temperature decreases with pressure (14) but the data cannot be explained
with the Kondo volume collapse model (4). We mention also that doping
the Yb sites with Lu®* ions (5) reduces T}, despite the fact that Lu has a
smaller ionic radius than Yb or Y; doping the In sites by smaller Ag ions
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enhances Ty, in YbIn;_,Ag,Cuy (8, 16) without changing appreciably the
lattice parameter. Thus, the effects of doping can not be explained in terms
of a chemical pressure. An external magnetic field of a critical strength
H.(T) destabilizes the low-temperature phase and induces a metamagnetic
transition which can be seen in the magnetoresistance and the magnetiza-
tion data (4). The experimental values of H.(T = 0) and T,(H = 0) are of
the same order of magnitude.

2. Theoretical description and the DMFT solution

A qualitative description of the properties described above is provided by
the Falicov-Kimball (FK) model (17) which takes into account the interac-
tion between a 2—fold degenerate conduction band and a lattice of Yb and Y
ions. Each lattice site can be occupied either by a Yb?**, Yb3*+ or Y37 ion.
The Yb?* ion has a full f-shell and is non-magnetic, the Yb3* is magnetic
with one f-hole in a J=7/2 spin-orbit state, and the Y?* is non-magnetic,
with one additional hole with respect to the Yb?* ion. The number of Y3+
ions is fixed in each alloy, while the concentration of Yb3* and Yb?™ ions is
a thermodynamic variable. The f-holes are localized and the state of a given
Yb ion can not change in time but the relative number of Yb?* and Yb3+
changes due to thermodynamic fluctuations. The conduction electrons can
hop between nearest-neighbor sites on the D-dimensional lattice, with a
hopping matrix —#;; = —t*/2v/D; we choose a scaling of the hopping matrix
that yields a nontrivial limit in infinite-dimensions (18). We assume that
the magnetic f-hole on Yb3*t and the spinless hole on Y31 interact with
the holes in the conduction band by a Coulomb repulsion Uy and Uy,
respectively. Averaging over all possible random distributions of Yb?* |
Yb3+ and Y3 ions restores the translational invariance and leads to the
Falicov-Kimball model for the lattice Yb-Y ions,

Hrx = HY+Hp + Hy + Hu, (1)
where
Hy=> (—tiy — pdig)dl, djo, (2)
ij,0
Hy =S (Ef — ) f} fin: (3)
4
Hy = (By — py)cles, (4)
and
Hy =Up S dl,dig f] fin + Uy Y. dl,digclec;. (5)
i,ﬂﬂ ’i,ﬂ
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Spin-1/2 conduction holes are created or destroyed at site i by d;[(, or dj,, the
8-fold degenerate localized f-holes are created or destroyed at site 7 by szn or

fin, and the spinless Y-hole is created or destroyed at site 7 by c;[ or ¢;. We
use o and 7 labels to denote the angular momentum state of the d- and f-
holes, respectively. The d-, f- and Y-number operators at each site are nfi =
Yoo Ny nzf = n;n, and n}-, respectively, and we have the local constraint
nlf +nt < 1. The Y-doping reduces the number of f-holes in the conduction
band and provides additional Coulomb scattering for conduction-holes. For
a given concentration x of Y ions, the chemical potential i is employed to
conserve the total number of remaining d- and f-particles, ng(T) +ns(T) =
ngot — . In the presence of a magnetic field the magnetic degeneracy of the
f-holes is lifted and the Hamiltonian (1) is supplemented by a Zeeman term.
Using the basis that diagonalizes simultaneously the zero-field Hamiltonian
and JZ /2 component of the angular momentum operator, we can write,

My = gansH Y odldjg + grupH > nfl fin, (6)

e in

where g, and g; are the g-factors. The numerical calculations are per-
formed for a hyper-cubic lattice with a Gaussian noninteracting density of
states p(e) = exp[—€2/t*2]/(\/7t*); and t* is taken as the unit of energy
(t* = 1). We consider only the homogeneous phase, where all quantities are
translationally invariant.

The DMFT reduces an infinitely-dimensional FK lattice to the problem
of an atomic d-state coupled to an atomic f-state by the same Coulomb
interaction as on the lattice (19), and perturbed by an external time-
dependent field, A\(7,7'). The field is taken in such a way that the local
d-electron Green’s function of the lattice coincides with the Green’s function
of the atomic d-state, G7 .(2) = GJ;(z). The atomic problem is solved by
defining the generating functional (the partition function of the FK atom)
in the interaction representation (20),

Za(1. ) = Trgre [Tre Mot S(V)] (7)

where the statistical sum runs over all possible quantum states of the system
and depends on \? (7, 7') for 7, 7" € (0, 8). The Hamiltonian of the FK atom,

Hat = —p Y dide + (Bp —p) Y [l fn + (By — py)cle
o n

+ Uy didoflfy + Uy Y didscie, (8)
an on
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defines the time evolution of the operators, and the external field defines
the time-evolution operator for the state vectors,

8 B ! o ! !
S(A) = Ty~ Jo 4 fy a7 32, X (1)l (7)o (7). ()

In the presence of the magnetic field, we add to (8) a Zeeman term that is
obtained from (6) in an obvious way. The Hilbert space can be decomposed
into invariant subspaces with respect to ny and n., and the matrix elements
in (7) can be calculated within the ns-invariant subspace by replacing
> f);fn in H, by its eigenvalue (0 or 1) and setting n, = 0. Within the
nc-invariant subspace we use ny = 0 and n., = 1. This gives,

Zat(:u: >‘) = ZO(M? >‘) + ZfZO(:u - Uf: >‘) + 2'7Y2’70(:u — Uy, >‘): (10)

where, Z; =3, o= BETD ) g Zy = e BEy=1v) are the partition func-
tions of the Yb3T and Y3+ holes decoupled from the d-states, and Zy(u, \)

is the partition function of the U; = Uy = 0 atomic d-state coupled to the
A-field only. We have,

ZO(NaA) = HZ[(J’(N»A)» (11)
where
25 (1, )) = Tag [Tre P88 (4, A7) (12)
and
MG == (n— gaupH)d}d,. (13)

a

To calculate Z§ (i, A) we introduce the d-electron propagator for this sim-
plified atomic problem,

dIn Z§

GS(TﬂJ) = —ma

(14)

which is determined by the equations of motion (EOM) and the boundary
condition GJ(r,7") = G (7 + B,7'). The EOM’s reduce, in the Matsubara
representation, to a set of decoupled linear algebraical equations, such that
[GF.]7" = [98,]7" — A7, where [g8,]™" = iwn + p — oppgyH is the prop-
agator of the trivial Uy = Uy = A = 0 atomic d-state. Using Z§ (p, \) =
det |[Gg]7"| and det|[g§]~"| = 1 + exp (4 — oppgaH), we can write the
partition function of the Uy = Uy = 0, A # 0 atomic model as,

28 (1 A) = (14 PbmommaaD) TT(1 = A7 gf,,). (15)

n
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The partition functions in the ny = 1 (ny = 0) and the ny =1 (ny = 0)
subspaces are obtained from the ny = ny = 0 solution by replacing p in
Z§(p, A) by p — Uy and pu — Uy, respectively.

The fully renormalized Green’s function of the FK atom is, by definition,

L 32
Zﬂt(:“‘a }‘) 6>‘J(Tla T) ’

G (r,7') = — (16)
and can be calculated using Egs.(10) and (14). In Matsubara representation,
where G§, = —61n Z§ /d\], we obtain

Ny . Ny
(G (iwn)] ™t = Uy [GF (iwn)] = Uy’

where No = Zo(p4, X)/ Zat, Ny = 21 20(u—Uy, N) [ Zat, and Ny = Zy Zo(u—
Uy, \)/ 24 are the respective average numbers of the Yb?T, Yb3*+ and Y3+
ions in a Y-doped system. The concentration of Y-ions, Ny = z, is kept
constant at each temperature. For a given concentration Y ions we calculate

o (iwy) using Ng = 1—Ny—z. Since G§ is the solution of the Uy = Uy = 0,
A # 0 problem, the self energy of the full atomic problem is given by the
Dyson equation,

GY,(iwn) = NoGy (iwy,) +

(17)

27 =[G§7 - [Ga] ™" (18)
The solution for the FK lattice is defined by A such that

o (; ple)

Garliwn) = / iwn + p+oppgeH — X(2) — EdE' (19)
The equations (17) and (18), together with the expressions (10) and (15)
for the partition function, and the self-consistency condition (19), can be
solved by iteration. One starts from some trial self energy and finds G,
using Eq.(19). Then, one finds G§ from Eq.(18), finds Z,(u, A) from (10)
and (15), calculates GY, by functional derivatives, recalculates ¥ using
(18), and continues until the fixed point is reached. Once the numbers Nj
and Ny are obtained we can iterate (17), (18) and (19) on the real axis and
find the retarded quantities. In what follows, we use the DMFT to calculate

the thermodynamic and transport properties of the model corrsponding to
the Yby_,Y;InCuy alloys.

3. Numerical results

The calculations are performed assuming that doping by Y3* ions removes
holes from the conduction band. In an undoped sample the total number
of conduction holes and the holes on the Yb?t ions is ng + ny = L5,
while for a concentration x of Y ions we assume ng +ny = 1.5 — z. The
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parameter space of the model is very large and a quantitative comparison
would require a fine-tuning of the parameters. Here, we only show the
results for static correlation functions obtained for Uy = Uy = 2t*, and
Ef = —0.6t*. Panel (a) of Fig.2 shows the effect of temperature and doping
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Figure 2. Panel (a) shows localized electron filling for eightfold degenerate doped

Falicov-Kimball model with Uy = Uy = 2t*, Ef = —0.6¢", and various doping levels z.
Panel (b) shows spin susceptibility normalized to the nominal concentration of Yb ions

ina Ybi—;Y,InCuy alloy.

on the average concentration of Yb3* ions. Panel (b) shows the f-electron
contribution to the spin susceptibility, which vanishes below T,, and is
Curie-like for T > T,. Above the transition temperature, defined by the
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inflection point of the susceptibility curves, the concentration of Yb3* ions
becomes significant but the effective Curie constant decreases with doping.
The effect of doping and temperature on transport properties is shown in

® x=0.2 o
x=0.15 ® i
A x=0.1 v
_ A
5| v x=0.05 e e
* x=0 A o
—~ [ 4 v
(= A *
& ° .
o« * 1
e o °* 1 3
v
A ¢ @
A A v
vV VvV e
0 . :
0 0.01 0.02
1.5
05t A
P 7
Ve
P
_05 r \\\\\\\ , /// s g b
NN L, e
(= X \\\\\\\ 7 // /// 7
c - H Q- o i
a s Lo
—— x=0.2 =
-25 x=0.15 f
fffff x=0.1
——— x=0.05
351 o o
_45 L
0 0.1 0.2

Temperature [t*]

Figure 3. Panel (a) shows DC resistivity of the Falicov-Kimball model for the same
parameters as in Fig.(2.) Panel (b) shows thermopower.

Fig. 3. Panel (a) shows that the resistivity of an undoped (z = 0) sample
starts from zero and becomes large around T, where the concentration of
Yb3* ions is large. In doped (z > 0) samples, the residual resistivity is
finite. At high temperatures the resistivity of all samples has a maximum
(not shown here). The relative importance of the doping diminishes for
T > T,. The thermopower results are shown in panel (b), using a 10 times
larger temperature scale than in panel (a), to reveail the minimum and a
sign-change. The theoretical results shown in Figs. 2 and 3 have a number
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of qualitative features that one finds in the experimental data. A detailed
comparison will be published elsewhere.
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