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We develop a formalism to solve the multicomponent Falicov–Kimball model with dynamical mean-
field theory, allowing for all possible crystal-field couplings (including spin-orbit coupling). We apply
these techniques to solve models of the intermediate-valence transition [as seen in YbInCu4 and
EuNi2(Si1�xGex)2] in the simple limit of no crystal field or spin-orbit coupling. We show results for the
uniform spin susceptibility, the average localized electron concentration, and transport properties. We
also investigate the metamagnetic transition.

Introduction and brief experimental summary The anomalous properties of intermetallic com-
pounds like YbInCu4 and EuNi2(Si1�xGex)2 have been the subject of many studies, because of the
isostructural valence-change transition which takes place, in the absence of an external magnetic field,
at a transition temperature Tv (for details see, e.g., [1, 2]). The transition is accompanied by the
disappearance of the local f -moment and the low-temperature phase shows anomalies typical of a
valence-fluctuating fermi liquid. The f -count is non-integral [3, 2], the conductivity is metallic with a
large mean-free-path, the susceptibility is enhanced and Pauli like [1, 2], the low-temperature slope of
the thermoelectric power is also enhanced [4, 6], and so is the electronic specific heat [1, 7]. The data
indicate that the characteristic energy scale of the low-temperature phase is quite large and that the
magnetic entropy of the rare earth ions is small. While the properties of such a fermi liquid state can
be explained assuming some hybridization between the f -electrons and the conduction band, the onset
of the high-entropy phase at the transition temperature Tv is difficult to explain by the Anderson or
Kondo models in which the full magnetic degeneracy is not expected to emerge below the Kondo
temperature TK � Tv. We note also that the low-temperature phase of YbInCu4 and EuNi2(Si1�xGex)2
is easily destabilized not just by temperature but by an external magnetic field as well. Applying a
field larger than a critical value, HcðTÞ, induces a metamagnetic transition and restores the f -moment
[1, 2]. The thermal energy of the valence transition and the Zeeman energy of the critical field are about the
same. The valence-fluctuating phase can also be destabilized by hydrostatic pressure and chemical doping.

The high-temperature phase has attracted less attention than the low-temperature one, although its
features are even more surprising. It exhibits a Curie–Weiss susceptibility with a reduced Curie con-
stant (from the nominal concentration of f -moments) and a very small Curie-Weiss temperature, as
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seen in YbInCu4 and EuNi2(Si1�xGex)2 [1, 2]. Since Tv � 50 K in most Yb-based systems and
Tv � 100 K in most Eu-based systems, the high-temperature phase is restricted to a rather narrow
temperature interval in which the anomalies are not sufficiently pronounced. Their properties become
most apparent if the valence-fluctuating phase is suppressed completely by pressure or doping. An
interesting example is provided by YbxY1�xInCu4 in which Y-substitution above 15% stabilizes the
high-temperature phase down to T ¼ 0 K [4, 8] and the anomalies can be studied in a broader tem-
perature range, and without additional features due to the transition. The experimental results for the
resistivity, the thermoelectric power and the susceptibility [4] are shown in Fig. 1.

The susceptibility data show that the Curie–Weiss temperature of all samples is about the same and
much less than Tv. The magnetic response of the high-temperature phase can be represented by a
single universal curve, provided one scales the data by an effective concentration of magnetic f -ions,
nf , which is always smaller than the nominal concentration of f -ions. The universal shape can be
explained by the crystal field (CF) theory from room temperature down to 10 K [5], which shows that
the ‘‘single-ion” CF theory does capture the functional form of the susceptibility data but the ‘‘mag-
netic” concentration appears to be quite different from the nominal one. Below 10 K, the susceptibil-
ity deviates from the CF theory and shows an apparent reduction of the Curie constant.

The resistivity of the high-temperature phase of YbxY1�xInCu4 has a weak maximum and the ther-
mopower has a minimum above 100 K but neither quantity shows much structure at low temperature,
where the susceptibility drops below the CF values. Similar transport anomalies are also seen in
EuNi2(Si1�xGex)2 [6], where the sign of the thermopower is reversed with respect to Yb systems.
Note, the discontinuity of the thermoelectric power at the valence transition is a trivial consequence of
different thermoelectric properties of the two phases: the thermopower of the valence-fluctuating
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Fig. 1 The left panel shows the resistivity and the inverse magnetic susceptibility of YbxY1�xInCu4 plotted as a
function of temperature for various concentrations of Y ions [4]. The dashed line shows the susceptibility of an
Yb0:20Y0:80InCu4 sample normalized to the nominal Yb concentration. Note, that all the ‘‘high-temperature” data
can be collapsed onto a single universal curve (not shown here), by normalizing the susceptibility with respect to
an effective Yb-concentration. The right panel shows thermopower of YbxY1�xInCu4 as a function of temperature
for various concentrations of Y ions [4]. The upper inset on the left panel shows the thermopower of undoped
YbInCu4, and the lower inset shows the low-temperature behavior.



phase has an enhanced slope and grows rapidly up to Tv, where it drops to the values characteristic of
the high-temperature phase. The experimental data indicate that the high-temperature phase is charac-
terized by degenerate local moments which interact with the conduction band (and, hence, get re-
duced) but the interaction is not of the usual Kondo type because Kondo-type anomalies are not seen.

The high-temperature behavior of YbInCu4- and EuNi2(Si1�xGex)2-like compounds can be well
described by the Falicov–Kimball model [9] in which the interaction between the conduction and
f -electrons is due to a Coulomb repulsion. The f -ions are allowed to exist in two configurations, which
differ in their f -count by one, and the concentration of f -electrons is treated as a thermodynamical
variable but the dynamics of the f -electrons are neglected. Here we concentrate on examining the
situation where we take into account the actual degeneracy of the total angular momentum multiplet
of the f -electron states. For Yb ions, the state with no f -holes has unit degeneracy, while the single-
hole state has a degeneracy of 8 (corresponding to S ¼ 7=2). The two-hole case is forbidden due to
the mutual repulsion of two holes costing too much in energy. The crystal field of cubic symmetry
lifts the 8-fold degeneracy of a single f -hole in YbInCu4-like systems, and gives rise to 2 doublets
and a quartet, unless there is some accidental degeneracy. For Eu ions in EuNi2(Si1�xGex)2-like sys-
tems, we consider only two ionic configurations: the one corresponding to Eu 4f6 (3þ), with a non-
magnetic ground state and two excited magnetic states, and the other one describing the magnetic 4f7

(2þ) state of Eu ions. All other states of the Eu ions are higher in energy and are neglected. The
crystal field of tetragonal symmetry splits the 8-fold degenerate magnetic f -state into 4 doublets,
while the magnetic field gives rise to Zeeman splittings. For simplicity, we discuss the case of Yb
ions and consider the Zeeman splitting only. The generalization to the CF-split case or to Eu ions is
straightforward and will appear elsewhere.

Theoretical formalism The Falicov–Kimball model is the simplest model of correlated electrons.
The original version [9] involved spin-one-half-electrons. Here, we generalize to the case of an arbi-
trary degeneracy of the ð2sþ 1Þ itinerant and ð2Sþ 1Þ localized electrons. The Hamiltonian is then

H ¼ �t
P
hiji

P2sþ1

s¼1
cyiscjs þ

P
i

P2Sþ1

h¼1
Efhf

y
ihfih þ U

P
i

P2sþ1

s¼1

P2Sþ1

h¼1
cyiscisf

y
ihfih

�gmBH
P
i

P2sþ1

s¼1
msc

y
iscis � gfmBH

P
i

P2Sþ1

h¼1
mhf

y
ihfih : ð1Þ

The symbols cyis (cis) denote the itinerant electron creation (annihilation) operators at site i in state s
(the index s takes 2sþ 1 values). Similarly, the symbols f yih (fih) denote the localized electron creation
(annihilation) operators at site i in state h (the index h takes 2Sþ 1 values). We identify the index s
and h with the z-component of total angular momentum. The first term is the kinetic energy (hopping)
of the conduction electrons (with t ¼ t*=2

ffiffiffi
d

p
denoting the nearest-neighbor hopping integral and all

energies measured in units of t*); the summation is over nearest neighbor sites i and j (we count each
pair twice to guarantee hermiticity). The second term is the localized electron site energy (which we
allow to depend on the index h to include crystal-field effects). The third term is the Falicov–Kimball
interaction term (of strength U) which represents the local Coulomb interaction when itinerant and
localized electrons occupy the same lattice site. Finally, the fourth and fifth terms represent the inter-
action with an external magnetic field H, with mB the Bohr magneton, g (gf ) the respective Land�
g-factors, and ms (mh) the z-component of total angular momentum for the respective states (in this
formulation we are assuming that Jz commutes with the crystal-field Hamiltonian so the crystal-field
and magnetic terms are simultaneously diagonalizable; this assumption is not necessary, but it does
simplify the notation). The chemical potential m is employed to adjust the total electron concentration.
We restrict ourselves to the case where the f –f interaction energy is infinite, so there is no more than
one localized electron per site.

In the large-dimensional limit, the self energy for the Falicov–Kimball modelSs ðzÞ becomes local [10],
so the local Green’s function can be expressed as an integral over the noninteracting density of states
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(DOS) qðEÞ ¼ exp ð�E2Þ=
ffiffiffi
p

p
(for the hypercubic lattice)

GsðzÞ ¼
ð
dE qðEÞ 1

zþ mþ gmBHms � Ss ðzÞ � E
ð2Þ

with z in the complex plane. The local self energy is found by solving the impurity problem in the
presence of a time dependent field lsðt; t0Þ ¼ lsðt � t0Þ. This proceeds in a number of steps [11].
First we determine the partition function of a generalized impurity via

ZimpðlÞ ¼ Trcf ½T t e
�bHimp SðlÞ� ; ð3Þ

with Himp the impurity Hamiltonian which can be written in the most general form as

Himp ¼ �
P2sþ1

s¼1
ðmþ gmBHmsÞ cyscs þHf þ U

P2sþ1

s¼1

P2Sþ1

h¼1
cyscsf

y
h fh ; ð4Þ

where we have kept the f Hamiltonian to be as general as possible (allowing all crystal-field and
spin–orbit terms; in the case we treat here, there are no spin–orbit terms considered but we can be
fully general in the formalism), and

SðlÞ ¼ T t e
�
Ðb
0

dt
Ðb
0

dt0 Ss lsðt�t0Þ cysðtÞ csðt0Þ
: ð5Þ

The operator csðtÞ ¼ exp ðtHimpÞ csð0Þ exp ð�tHimpÞ.
The dynamics of the f -electron are trivial, since the f -number operator commutes with the impurity

Hamiltonian and the trace over f states can be separated into a sum over the states with a fixed
number of f -particles. In the case of Yb, we consider the state with zero f -holes and with one f -hole
and the end result becomes

Zimp ¼ Z0ðl; mÞ þ Z0ðl; m� UÞZf
1 ð6Þ

with

Z0ðl; mÞ ¼
Q2sþ1

s¼1
2 e�bðmþgmBHmsÞ=2 Q1

n¼�1

iwn þ mþ gmBHms � lsðiwnÞ
iwn þ mþ gmBHms

� �
ð7Þ

where iwn ¼ ipTð2nþ 1Þ is the fermionic Matsubara frequency and lsðiwnÞ is the Fourier transform
of lsðt � t0Þ and

Zf
1 ¼ Trf : nf¼1 e

�bHf ¼
P2Sþ1

h¼1
e�bðEfh�gmBHmhÞ : ð8Þ

In the case of Eu ions the invariant f -subspace is defined by the constraint nf ¼ 6 and nf ¼ 7,
respectively. That is, the two configurations differ by one f -electron and the only change with respect
to the Yb case discussed above is that the partition function becomes,

Zimp ¼ Z0ðl; mÞ Zf
6 þ Z0ðl; m� UÞ Zf

7 ð9Þ

where Zf
7 is the same as Zf

1 and

Zf
6 ¼ Trf : nf¼6 e

�bHf ¼ e�bE6h þ
P2
h¼1

e�bðE0
6h�g0f mBHmhÞ : ð10Þ

The g-factors are different for the six and seven electron states, and E0
6h is the crystal-field split

energy of the excited magnetic state with six electrons.
Second, we determine the impurity Green’s function by GsðiwnÞ ¼ �d ln Zimp=dlsðiwnÞ which be-

comes

GsðiwnÞ ¼
w0

iwn þ mþ gmBHms � lsðiwnÞ
þ w1

iwn þ mþ gmBHms � lsðiwnÞ � U
: ð11Þ
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Third, the self energy is found from

Ss ðiwnÞ ¼ iwn þ mþ gmBHms � lsðiwnÞ � G�1
s ðiwnÞ : ð12Þ

Here we have w1 ¼ 1� w0 and

w0 ¼ Z0ðl; mÞ=Zimp ; ð13Þ
note that w1 is equal to the average f -electron concentration nf .

The Green’s function is determined by the following algorithm [12]: (i) we start with S ¼ 0; (ii)
use Eq. (2) to determine the local Green’s function; (iii) employ Eq. (12) to find the dynamical mean
field l; (iv) calculate w0 from Eq. (13) and the impurity Green’s function from Eq. (11); and (v) use
Eq. (12) to find the new self energy. This is repeated until the Green’s function converges.

Once the Green’s function is determined on the imaginary axis, one can iterate the analytic conti-
nuation of these equations (with w0 fixed) and calculate the Green’s functions on the real axis. Then
one can determine the transport by evaluating the bare bubble for the dc conductivity [13] and then
use the Jonson-Mahan theorem for the thermal transport [14–16]. The result for the dc conductivity is

sdc ¼ s0

ð1

�1

dw � df ðwÞ
dw

� � P2sþ1

s¼1
tsðwÞ ; ð14Þ

with the spin-dependent relaxation time equal to

tsðwÞ ¼
Im GsðwÞ
Im SsðwÞ

þ 2� 2 Re f½wþ mþ gmBHms � SsðwÞ� GsðwÞg : ð15Þ

The thermal transport (such as the thermopower S and the electronic contribution to the thermal conductiv-
ity je) are expressed in terms of three different transport coefficients L11, L12 ¼ L21 and L22 as follows:

sdc ¼ e2L11 ; S ¼ kB
jejT

L12
L11

; je ¼
k2B
T

L22 �
L12L21
L22

� �
; ð16Þ

with kB the Boltzmann constant. The individual transport coefficients are determined by the zero-
frequency limit of the analytic continuation of the relevant polarization operators
Lij ¼ lim

n!0
Re ½i�LLijðnÞ=n� with

�LL11ðinlÞ ¼
ðb

0

dt einlt Trcf
hT t e�bH jnðtÞ jnð0Þi

ZL
; ð17Þ

�LL12ðinlÞ ¼
ðb

0

dt einlt Trcf
hT t e�bH jnðtÞ jQð0Þi

ZL
; ð18Þ

and

�LL22ðinlÞ ¼
ðb

0

dt einlt Trcf
hT t e�bH jQðtÞ jQð0Þi

ZL
; ð19Þ

where the subscripts n and Q denote the number (charge) and heat currents respectively (and we
suppressed the Cartesian vector indices); ZL is the partition function for the lattice. All of these
correlation functions are determined by their corresponding bare bubbles, because there are no vertex
corrections for any of them. There is a simple relation between these different transport coefficients

e2

s0
Lij ¼

ð1

�1

dw � df ðwÞ
dw

� � P2sþ1

s¼1
tsðwÞ wiþj�2 ; ð20Þ

which allows the thermal transport to be determined.
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Metamagnetism can be calculated by examining the solutions in a magnetic field. The average
magnetization is

hmf i ¼
Z0ðl; m� UÞ

Zimp

P2Sþ1

h¼1
mh e

�bðEfh�gmBHmhÞ ¼ hnf i
1
Zf

P2Sþ1

h¼1
mh e

�bðEfh�gmBHmhÞ ; ð21Þ

which is the expected ‘‘crystal-field” result, reduced by the average f -filling 0 � hnf i � 1. Because of
this reduction, the temperature-dependent Curie constant is reduced by the same factor.

Theoretical result The main result we wish to show here is the effect of increasing the localized elec-
tron degeneracy on the phase transition of the Falicov–Kimball model. We choose the f -level Ef to be
the same for all h states, and equal to �0.6 (i.e., no CF splitting). The renormalized f -level lies above the
chemical potential at T ¼ 0, so there are no f -electrons in the ground state, but it is tuned to lie close to
the chemical potential, so as T increases, the f -occupancy increases, producing a local-moment response.
Since the filling of the f electrons is entropically driven, we expect the filling to increase rapidly with T
as the degeneracy increases. In Fig. 2, we plot the average f -occupation and the spin susceptibility
(normalized by the average of m2

z which equals 1/2 for spin-one-half and 42 for spin-seven-halves) for
two cases: spin 1/2 and spin 7/2. We pick two values of U, a weaker correlated system at U ¼ 2 and a
stronger correlated one at U ¼ 4. The total electron filling is 1.5. The solid lines are for U ¼ 2 and the
dotted for U ¼ 4, while the thin lines are S ¼ 1=2 and the thick lines are S ¼ 7=2.

One can see in panel (a) that as the degeneracy increases from two to eight, the high temperature
value of nf increases, the ‘‘transition temperature” decreases, and the transition becomes sharper (at
even higher temperatures nf increases even more in the degenerate case). Increasing U to 4 broadens
the overall transition, but the qualitative effects of adding f -states is the same. In panel (b), we plot
the spin susceptibility, which satisfies a Curie-like form, but with a temperature dependent concentra-
tion of local f -moments. Hence it has a peaked form, with a sharp reduction of the magnetic response
as T ! 0. Once again, the susceptibility is enhanced, sharpened, and Tv moves to lower temperature
as the degeneracy increases. Increasing U (for fixed Ef ) broadens the transition.

We can also investigate the transport properties of these solutions. Here we see some interesting
results, as shown in Fig. 3. In panel (a), we see that the resistivity has a maximum at an effective
temperature T* which is much larger than Tv. This occurs due to the development of a gap in the
single-particle DOS at high temperature driven by the increased f -electron occupation and the Fali-
cov–Kimball interaction. The peak sharpens and is significantly enhanced as the degeneracy in-
creases; experiment does not show this large enhancement, rather the resistivity is rather flat. Increas-
ing U pushes T* to higher energies. The results are somewhat similar for the thermopower in panel
(b), except here we see the peaks sharpening for higher degeneracy, although the maximal value of S
does not change substantially with degeneracy. The location of the peak in the thermopower is pushed
to a lower temperature though.
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Fig. 2 (a) Localized electron filling
and (b) normalized spin susceptibility
for the Falicov–Kimball model with
ntot ¼ 1:5 and Ef ¼ �0:6. The solid
lines are for U ¼ 2 and the dashed
lines are for U ¼ 4. The thick lines are
for an eightfold degenerate case
ðS ¼ 7=2Þ, and the thin lines are for a
twofold degeneracy ðS ¼ 1=2Þ.



Conclusions We developed the formalism to describe the Falicov–Kimball model with arbitrary crys-
tal-field and spin-orbit couplings for the localized electrons. These generalizations are needed to explain
a number of the anomalous features seen in the high-temperature phase of valence-change materials like
YbInCu4 and EuNi2(Si1�xGex). We numerically analyzed the simplified case of considering the proper
degeneracy for the Yb ions, and saw that it produced a number of interesting features: (i) the valence-
change transition was sharpened and the total magnitude of the valence change increased and (ii) the
peak in the resistivity was enhanced and moved to lower temperature, while the peak for the thermo-
power was only slightly enhanced, but also moved to lower temperature. We plan to further investigate
these systems, including more complicated crystal-field and spin-orbit couplings, elsewhere.
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Fig. 3 (a) DC resistivity and (b) ther-
mopower for the Falicov–Kimball model
with ntot ¼ 1:5 and Ef ¼ �0:6. The so-
lid lines are for U ¼ 2 and the dashed
lines are for U ¼ 4. The thick lines are
for an eightfold degenerate case, and the
thin lines are for a twofold degeneracy.


