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Abstract

From June 2004 to May 2005, as part of the requirement of our Ph.D. program, I worked as

an apprentice under the supervision of Barbara Jones at the IBM Almaden Research Center.

1 IBM

During its almost a century history IBM was mainly known as a leader in a “tabulator” business.
Starting with tabulators in 1911 (that time they were sold by a company called CTR, T. J. Watson
changed its name to IBM in February of 1924), followed by calculator (aka large-scale automatic digital
computer) Mark-1, then big mainframe computers and finally personal computers, IBM has stayed
a leader in this new computer business. IBM was also a leader in many computer-related areas like
storage devices, servers, databases, and this was mainly achieved by acquisitions in software products.

IBM has undergone pretty dramatic changes starting in December 2002, when they sold their disk
drive business to Hitachi. This was followed by a sale of their PC business to Lenovo in December
2004. Right now, IBM still has some parts of what is considered its traditional business, namely they
didn’t abandon their server business, they are making special purpose chips and even have opened a
300 mm chip-making plant in July 2002 in New York state. It probably can also be said that one of
IBM’s biggest high tech businesses – the database division – is in good health. But based on what has
happened to IBM since they adopted a corporate strategy to enter the service sector and leave the
commodity businesses (hard drive and PC businesses nowadays are, in fact, very low-profit-margin
businesses), it probably can be concluded that people who knew what IBM was in 20th century will
find it difficult to recognize its new face in 21st century. As the on-line newspaper InfoWorld says,
“Since 2002, IBM has spent about $9 billion to acquire over 30 companies including Price Waterhouse
Coopers Consulting. In the same period, it has divested several businesses where it lacks scale or
market opportunities, such as its hard-disk drives and displays units.”[1] So it’s likely that in ten
years we may find IBM being a large investment bank or a consulting firm.

2 IBM Almaden Research Center

The Almaden research center, one of IBM’s world-renowned research facilities, was hurt considerably
by the changes IBM has undergone in recent years. In particular, the IBM Almaden center’s Science
and Technology division, which is involved in basic and applied research in condensed matter physics,
was hurt the most. A large part of the division, involved in hard disk drive research, was sold to
Hitachi and currently Hitachi and IBM are sharing the same building. There are still IBM Almaden
groups involved in novel magnetic/non magnetic storage technology research. Stuart Parkin’s (IBM
Fellow) group, for example, has recently developed a working prototype of a non-volatile MRAM
memory chip based on Magnetic Tunnel Junctions (MTJs). Dan Rugar’s group was involved in the
development of a so called Millipede high-density storage device based on the principle of Atomic
Force Microscopy (AFM), and right before the sale of the hard disk drive business to Hitachi, Kumar
Wickramasinghe (IBM Fellow) was developing a novel technology for increasing the storage density of
usual hard drives by heating “bits” of magnetic medium before writing to them. But after IBM got rid
of its magnetic storage technology, a necessary and important link between research and development
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2 3 RESEARCH

was lost and this, in my opinion, adversely affected the motivation of research as well as the spirit of
Almaden employees in the Science and Technology division. This link is important because working
with IBM product developers to use knowledge gained by researchers in creating new products and
in improving existing IBM products is what distinguishes an industrial lab from an academic one and
justifies its existence.

3 Research

My research at Almaden consisted of four parts, two of which were not related directly to work done
at Almaden, and two that were. The latter ones were theoretical investigations of the so-called mirage
effect and of domain wall motion in magnetic wires. These topics are described in detail below.

3.1 Different energies in magnetic materials: Theoretical background

We will consider the energies of magnetic metals. A magnetic metal typically has both conduction
and localized electrons. We assume that such a metal can be described using a “classical” picture
of magnetism, namely, that the magnetization M is created by localized electrons and to a good
approximation its magnitude can be considered to be constant: |M| = const. In the absence of current,
the wire has an equilibrium distribution of the magnetization M(r). This equilibrium distribution
is determined by the minimization of a free energy functional F [M(r)] which includes the following
terms (for details see [2]):

1. Exchange energy Eex

This is the energy required by a nonuniform magnetization M1:

Eex =
1

2

∫
αik

∂Ml

∂xi

∂Ml

∂xk

d3x (1)

where αik is a material specific symmetric tensor.

2. Anisotropy energy

This energy reflects the fact that different directions of magnetization have different energies be-
cause of spin-orbit and spin-spin interactions of electrons with the crystal nuclei (whose positions
are fixed at the lattice sites) and has the form

Ean =

∫
Kik

|M|2
MiMkd

3x (2)

where Kik is a material specific symmetric tensor.

3. Magnetoelastic energy

This energy arises due to a deformation of the crystal; it has both a relativistic and exchange
component, and is written as

Eme =

∫
1

|M|2
aiklmσ̃lmMiMkd

3x (3)

where aiklm is a material specific tensor that is symmetric in ik and lm and σ̃lm is the elastic
strain tensor.

4. Magnetostatic energy.

This energy is the energy of the magnetic field itself. The density of the magnetostatic energy
is expressed as

Ems = −M ·H −
H2

8π
. (4)

1We assume a summation over repeated indices.
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The magnetic field created by a static distribution of magnetization can be described using an
electrostatic analogy. This means that to find the magnetic field strength H, we need to find
a field created by “magnetic” charges with volume density ρm = −divM and surface density
σm = Mn, where Mn is the normal component of the magnetization on the surface of the
magnetic material2. So, the equation and the boundary condition for H read

divH = 4πρm (5)

Hn = −4πσm

which are, as was already said, completely equivalent to the equations obeyed by a static electric
field. This approach allows us to rewrite the magnetostatic energy as

Ems =
1

2

∫

V

ϕρmdV (6)

and interpret this energy as the energy of “magnetic charges” in a magnetic field with the
potential

ϕ(r) =

∫

V

ρm(r′)

|r− r′|
d3r , (7)

where ρm is assumed to incorporate the surface charges σm through δ-functions3.

3.2 Domain wall motion in magnetic nano-wires: Experiment

My theoretical work on domain wall motion was motivated by an article by G.Tatara et al. [4] which
explored the notion of current-induced domain wall motion. Let’s describe the physics of this phe-
nomenon.

Magnetic wires, which are of interest for us, have two particular features. First, they are created by
some deposition process (like sputtering, electron beam or molecular beam deposition). That means
that deformations are virtually absent and the magnetoelastic energy can be disregarded.4 Second,
the cross section of the wires is very small (in the experiment in [5] the wires used had a cross section
of 70 × 45 nm). Because of this small size, it is energetically unfavorable to have an inhomogeneity
within the cross sectional plane, because this would create too large of an exchange energy. So, it is
energetically favorable to have a uniform magnetization distribution along the length of the wire. The
orientation of the magnetization along the largest length reduces the value of magnetostatic energy
created by the “magnetic” charges on the exterior surace of this rectangular-shaped wire. Once we
realize that the equilibrium distribution of the magnetization is uniform and points along the wire
(two possible directions) it is easy to see that the only possible domain structure for such a wire is
the so-called “head-to-head” domain (see Figure 1). This is when the magnetization in neighboring
domains points in opposite directions.

Let’s briefly describe the experimental setup which was used to study domain wall motion (details
can be found in [5]) and then proceed to our theoretical investigations. In the experiment, such a wire
with two head-to-head domains was bent and put into an external magnetic field (see Figure 2).

When the magnetic wire is placed in a sufficiently weak magnetic field H, this field doesn’t change
the distribution of the magnetization in the wire. Then we only need to account for an additional
magnetostatic energy (6), where ρm is the density of the surface magnetic charges on the sides of the
wire, where magnetization has a non-zero normal component and ϕ(r) is the potential created by the
magnetic field H: ϕ(r) = H · r. It is easy to see that, when the wall moves, this energy changes in
the same way as the potential energy of a pendulum in a uniform gravitational field.

To move the wall from equilibrium position, a spin polarized current was used. A detailed description
of the physics behind that effect would take more space than we can afford to allocate in this short
report, so we are referring the reader to the article by Tatara et al. [6] and the references therein.

2Here we assume that the component Mn is calculated with respect to the magnetic material’s outwardly pointing
normal vector.

3For a more detailed description of the electrostatic analogy see [3].
4For the magnetoelastic energy to play a role tensions are usually introduced using fast cooling from a melt.
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Figure 1: Model distribution of magnetization in a head-to-head domain structure. In such a structure,
the magnetization to the left and to the right points in opposite directions along the wire; a particular
distribution of the magnetization inside the domain wall (the gray box) is determined by minimizing
the thermodynamic potential. In our case, it is a competition between the magnetostatic and exchange
energies.“+” and “–” signs denote magnetic charges created on the sides of the wire, where the
magnetization has a non-zero normal to the wire surface component.

Figure 2: A head-to-head domain wall in a weak magnetic field H can be regarded as a magnetic
dipole, which can move along the wire. Its energy is then essentially the energy of a pendulum in a
uniform gravitational field.

3.3 Domain wall motion in magnetic nano-wires: Theory

A detailed theory of the motion of magnetic domain walls can be found elsewhere (see [4] and references
therein, for example). The wall can be described by two parameters, an angle Ψ and a coordinate of
the wall q. The angle Ψ is the polar angle of the magnetization in the spherical system of coordinates.
These two parameters satisfy a system of differential equations

q̇ = −α(ωpinq − βu) + uc sin 2Ψ + u (8)

Ψ̇ = −
1

∆
(ωpinq − βu) −

α

∆
(uc sin 2Ψ + u) (9)

where we have the following parameters: ∆ is the domain wall width, α is the Gilbert damping, which
reflects the rate of energy loss when the magnetization vector is moving; a is the length of the unit
cell, and S is the spin per unit cell (from which the magnitude of the magnetization of the material
can be found: Ms = 2SµB/a

3). The parameter uc,

uc =
∆SK⊥

2h̄
, (10)
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is proportional to the anisotropy field K⊥ of the wire 5. The parameter u

u = vel =
a3

2eS
js , (13)

characterizes the so-called spin transfer, where js is the density of the spin current. This spin transfer
arises because of a directional mismatch between the wall magnetization and the spin polarization of
the current. As conduction electrons travel through the wall a torque is exerted by the wall on the
electrons, which tries to align the electrons spin directions with the magnetization direction of the
wall. This means that a torque of the same magnitude is exerted on the wall by the electrons.

The spin torque is not the only “force” acting on the wall. The other interaction, called momentum
transfer, is independent of the spin direction, and arises because of the reflection of electrons from the
wall, which (reflection) is proportional to the wall’s resistance:

Fel = enRDW IA (14)

where A is the cross sectional area of the wire, I is the current through the wire, RDW is the domain
wall electrical resistance, and n is conduction electron density. In equations (8,9), the momentum
transfer strengt is included in the term β, which is proportional to the ratio Fel/vel:

β =
a3∆

2h̄AS
·
Fel

vel

(15)

The remaining parameter is ωpin, which reflects the strength of the pinning potential. The pinning
potential, that enters the Hamiltonian of the system, is a parabolic potential

Vpin = AV q2 (16)

where V characterizes the strength of the potential. In fact, it can be any potential depending on the
wall position q. For example, defects in the wire create potential barriers or, maybe, potential traps.
In our case, the potential energy arises as a consequence of the interaction of the wall’s magnetic
dipole6 with the external magnetic field which, for small deviations of the wall from the equilibrium
position q = 0, is quadratic in q. Then the pinning frequency ωpin is defined as

ωpin = γ
∆V

Ms

. (17)

Another natural frequency, which arises from equations (8,9), is ωK

ωK =
uc

∆
, (18)

which is the inverse time for an object moving with velocity uc to cross the length ∆ of the domain wall.

Equations (8,9) can be significantly simplified, if we rewrite them using the following dimensionless
variables [7]:

x =
q

∆
, τ = ωKt , v =

u

uc

, r =
ωpin

ωK

. (19)

Then equations (8,9) become

5Note, although, that it’s not a usual anisotropy field due to crystalline structure of the material, which – in the
experiment considered – is amorphous, not crystalline; it is the field, characterizing the asymmetry of the wire in
xy-plane due to demagnetizing fields:

Udf = K1m2

x+K2m2

y+K3m2

z = sin2 θ(K1 cos2 φ+K2 sin2 φ−K3)+K3 = sin2 θ(K1−K3+(K2−K1) sin2 φ)+K3 . (11)

Dropping a constant term K3, we get
Udf = sin2 θ(K + K⊥ sin2 φ) (12)

6See sections 3.1 and 3.2 for explanation of the meaning of magnetic charge and dipole.
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∂x

∂τ
= −α(rx − βv) + (sin 2Ψ + v) (20)

∂Ψ

∂τ
= −(rx − βv) − α(sin 2Ψ + v) .

There is an analogy of equations (20) with the so-called resistively shunted junction (RSJ) model for
current flow in a Josephson junction. Consider a Josephson junction, connected in parallel with a
capacitor C and a resistor R, driven by an (ac) current source I (see Fig. 3).

Figure 3: Equivalent circuit for the RSJ Josephson junction model.

Such a junction is also described by a pair of coupled differential equations:

CV̇ = −
V

R
+ I − Ic sinφ (21)

φ̇ =
2e

h̄
V

where Ic is a characteristic current of the junction, V is a voltage drop through the junction, and φ
is the quantum-mechanical phase difference between the two superconductors.

It was observed [7] that equations (21) look very similar to equations (20) for domain wall motion.
This becomes obvious when we rewrite equations (21) in a dimensionless form using the parameters
(Vc = IcR, ωc = 2eVc/h̄, τ = RC) x = V/Vc, i = I/Ic, and r = ωcτ = (2e/h̄)IcR

2C. Then equations
(21) become

x′ξ = −x+ i− sinφ (22)

φ′ξ = rx

where time derivatives are taken with respect to dimensionless time ξ = t/τ (we see that in this form
the only parameter, which defines a behavior of the junction, is the dimensionless parameter r.

We should stress that equations (20) and (22) are only “similar”: there is no set of parameters where
these equations become equivalent (or at least not an obvious one). But we can hope that their simi-
larity will give rise to similar behavior of their solutions. Indeed this turns out to be true.

The Josephson junction equations (22) display an unusual behavior called Shapiro steps. The essence
of this effect can be described as follows. Let’s assume that first the driving current i is a constant
i = idc and we set up an experiment where we measure the average voltage drop x̄ versus the DC
current magnitude idc. Figure 4 shows this dependence. For idc > 1, the average voltage x̄ exhibits a
monotonic growth shown in the black curve in Fig. 4.

Interesting behavior is observed when we turn on an additional AC current7:

7The ac current for Josephson junctions is in the microwave frequency range, so “turning on” here means inducing
it using so-called microwave transmission lines.
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Figure 4: Average dimensionless voltage 〈x〉 as a function of dimensionless driving dc-current ampli-
tude idc for several ac-current amplitudes, (a) iac = 0 – black curve (b) iac = 0.5 – red curve (c)
iac = 1 – green curve.

i = idc + iac sin(ωacξ) . (23)

When the magnitude of the DC current i is close to ωacn/r (with n an integer), the average voltage
x̄ stops to grow with increasing idc. This effect is called mode-locking or Shapiro steps8. Figure 4
illustrates this effect.

Our goal is to find out whether solutions of the system of equations (20) illustrate similar behavior to
what is found in the equations describing a Josephson junction, namely Shapiro steps. We solved these
equations using different sets of parameters α, β, r and v and found that indeed plots of the average
displacement x̄ versus vdc do show Shapiro-step behavior. It turns out that these plots show even
more rich and interesting behavior, including hysteresis and Shapiro steps at fractional frequencies.
The following pictures and descriptions briefly describe our findings.

Let’s first discuss the numerical values of the parameters we used. From [5] it can be found [7] that
α ∼ 10−2, β ∼ 1 and r ∼ 10−4. The value of u is determined by the current through the wall. A
natural scale for v is 1 because v = 1 is the value of current when Walker breakdown happens in the
absence of pinning potential. We apply

v = vdc + vac sin(ωacτ) (24)

The frequency of forced oscillations ωac is chosen in such a way that the first Shapiro step occurs at
vdc ∼ 1.

First let’s consider the case when vac = 0. The ultimate technological goal of current-induced do-
main wall motion is to displace domain walls as far as possible by the smallest possible currents. A
theoretical investigation of the system (20) showed [7] that there exists a so-called “attraction line”

〈x〉 ≈
vdc

αr
(25)

where the frequency of oscillations (in units of ωK) satisfies

8We will use these terms interchangeably.
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Ω ≈
2vdc

α
, (26)

although the theory couldn’t tell whether this regime is achieved only for vdc > 1 or for lesser currents
too. It should be noted that the Walker breakdown current vdc = 1 is very high for practical appli-
cations. We should note also that the regime of equation (25) is very attractive from an applications
point of view because αr ∼ 10−6, which means the average displacement of the domain wall is 106

domain wall lengths ∆ for vdc ∼ 1. Figure 5 shows the average displacement of the domain wall versus
the dc-driving current amplitude vdc for different initial conditions9. From the plot, we can see that if
each solution is calculated with an initial condition x = 0, Ψ = 0 at τ = 0 for every value of vdc, then
the displacement 〈x〉 of the domain wall is zero up to vdc ≈ 0.74. Then 〈x〉 jumps and stays very close
to the theoretical estimate (25) 〈x〉 = vdc/(αr). On the contrary, if the solutions are calculated with
the initial coordinate on the attraction line x(0) = vdc/(αr) (the second condition Ψ(0) = 0 seems
less important), then the equilibrium solution stays on the attraction line down to vdc ≈ 0.01425 . So
we have hysteretic behavior here. Beyond just scientific curiosity, this suggests that we can move the
domain wall by a significant distance using a high peak current vdc > 1 (above Walker breakdown);
to retain the wall at a large distance from its equilibrium position, we can use smaller currents (below
1).

Figure 5: Average displacement 〈x〉 of a domain wall versus driving dc-current amplitude vdc. α =
10−2, r = 3 · 10−2, β = 0, vac = 0 (a) initial point Ψ(0) = 0, x(0) = 0 – red curve (b) initial point
x(0) = vdc/(αr), Ψ(0) = 0 – black curve

Figure 6 shows the average coordinate of the wall calculated in the presence of an ac-current. Having
in mind that we are interested in practical applications frequency of the current was chosen so, that
Shapiro-steps would happen at as low a frequency as possible. For Ω = 1.5π, Equation (26) gives
vdc ≈ 0.024 (the graph shows this estimate is surprisingly precise).

Because we have hysteresis, the initial conditions play an important role, so for each curve we will
always specify, what initial conditions were used to generate it.

The curve for β = 0 was generated in the following way. For vdc = 0.05 the initial point was taken close
to the attraction line.10 Then the dc-current was adiabatically decreased. The point vdc ≈ 0.0143 is the
smallest current where the attraction line exists. If the dc-current is adiabatically decreased further,
then the average coordinate 〈x〉 abruptly drops to zero. If we don’t decrease the current further, but

9For this figure we used r = 3 · 10−2 (which is large, compared to experimental estimates) because it’s easier to
analyze, than the case r = 10−4. The case r = 3 · 10−2 shows richer behavior and it looks easy enough to realize in the
experimental setting: increase in r can be achieved by decrease in ωK , which, in turn, can be realized by making cross
section of the wire closer to square.

10Whenever we use the wording “close to the attraction line”, we mean x(0) = vdc/(αr), Ψ(0) = 0.
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Figure 6: Average displacement 〈x〉 of a domain wall versus driving dc-current amplitude vdc. α =
10−2, r = 3 · 10−2, vac = 0.03, ωac = 1.5π, initial point x(0) = vdc/(αr), Ψ(0) = 0

adiabatically increase it instead, then 〈x〉 repeats its behavior and no hysteresis is observed. So we
see that it is β 6= 0, which serves as the source of hysteresis.

More interesting behavior is observed when β 6= 0. E.g. the black curve is drawn for β = 1 starting
at vdc = 0.05 also close to the attraction line. As the dc-current is decreased until vdc = Ωα/2, the
β = 1-curve almost exactly follows the β = 0-curve. Then the mode locking regime occurs and the
left half of the Shapiro step is produced. At vdc ≈ 0.0195, 〈x〉 abruptly drops to the β = 0-curve and
then follows it almost exactly 11. If we don’t decrease vdc below vdc = 0.0143, but instead start to
increase it again (red curve), then the behavior of the β = 0-curve is reproduced almost exactly until
vdc = Ωα/2. A further increase leads to a mode locking regime again and the right half of the Shapiro
step is reproduced. Further increasing the current causes a sudden end of the mode locking regime at
vdc ≈ 0.0318 after which the curve reproduces the β = 0-curve.

The hysteresis observed is illustrated schematically in Fig. 7

Figure 7: Schematic hysteresis loop for α = 10−2, r = 3 · 10−2, vac = 0.03, ωac = 1.5π.

Examination of numerical results, shown in Fig. 6 reveals that the width of a Shapiro step is propor-
tional to β:

11The precision of our calculations is not enough to tell whether the difference between curves is due to numerical
error.
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Step width ∼ β (27)

and its “left half” width is equal to its “right half” width.

The strength of the mode locking, which is reflected by the width of a Shapiro step, also depends on
the ac-current amplitude. Large currents will probably be difficult to realize in experiment (although
not necessarily impossible), but we will still consider ac-currents vac > 1. They are worth examining
at least because solutions in that case show interesting behavior, which is not observed in Fig. 6.
Figure 8 shows the average displacement 〈x〉 of a domain wall for vac = 1.3. All other parameters are
the same except the frequency of the ac-current, which now is taken to be ωac = π. Then relation (26)
gives vdc ≈ 0.0157 for the dc-current, where we expect the Shapiro step to appear. Calculations,
depicted in Fig. (8), show that a large value of ac-current allows us to observe the mode locking effect
not only when the autogeneration frequency (26) coincides with the ac-current frequency Ω = ωac,
but also at a multiple frequency 2Ω (corresponding current vdc = ωacα), and at a fractional frequency
Ω/2 (corresponding current vdc = ωacα/4). All curves, except the yellow one, were generated with
initial conditions close to the attraction line for each value of the dc-current. The case of a half-
frequency Shapiro step is possible to observe only for β = 1 (remember, higher βs make the effect
more prominent) with a special hysteresis history: we choose the smallest current where the pink,
β = 1-solution is still non-zero (vdc ≈ 0.0117) and, instead of using initial conditions close to the
attraction line for a smaller current, we adiabatically decrease the current. Under such conditions the
mode locking regime persists for a current as low as vdc ≈ 0.0063

Figure 8: α = 10−2, r = 3 · 10−2, vac = 0.03, ωac = 1.5π.

4 Quantum mirage effect

Another research project which I was involved in at IBM was a theoretical study of the quantum
mirage effect. Let’s describe what the essence of this effect is. The initial quantum mirage experiment
was performed by H. Manoharan et.al. [8]. An array of Co atoms was arranged on the (111) surface
of a single-crystal Cu sample. The atoms were arranged so that they formed an ellipse of a given
eccentricity e. Then a scanning tunneling microscope (STM) was used to measure the density of states
(DOS)12 on that surface. A Co adatom was next placed at one focus of the ellipse and the surface
DOS was measured again. Topograph images obtained and their difference are shown13 in Figure 9.

12Of course, STM measures the density of surface states.
13The picture is copied from [9] without a permission
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Figure 9: Topograph images inside an elliptic structure made of Co adatoms on a Cu-surface (a)
without a Co adatom (b) with a Co adatom at the right focus (c) difference (a)–(b). Measurements
(a) and (b) are performed at a bias voltage of +10 mV of the sample with respect to the STM’s tip.

This experiment was studied theoretically by a few authors ([9], [10], [11], [12]). The most successful
theory was an approach suggested by Fiete et. al. [9] based on a single particle scattering theory. In
our study of the effect, we had a particular goal – to understand whether the Kondo effect plays an
important role in what is seen in experiment. To include Kondo interaction more or less from first
principles we needed a more simplified picture.

Some of the experimental results obtained by Manoharan et. al. [8] suggest that the Kondo effect
is important to understand the system under consideration. So, it’s natural to apply the Kondo
Hamiltonian to study this system.

5 Theoretical description

Let’s briefly review this Hamiltonian. The Kondo Hamiltonian describes the interaction of a localized
electron that has a local moment, placed in a sea of itinerant electrons. Such itinerant electrons may
be either free ones or in a potential field created, for example, by the ions of a crystal lattice. So, it is
the sum of the Hamiltonian of itinerant electrons T +V , where T is kinetic energy and V is potential
energy of itinerant electrons, and the interaction Hamiltonian Hint:

HKondo = T + V +Hint (28)

The Kondo interaction is [13]

Hint(R) = −
∑

kp,αβ

Jkp(R) ~̂S~σαβ ĉ
†
kαĉpβ (29)

where

Jkp(R) = e2
∫
d3r1φ

∗
k(r1)φL(r1 − R)

∫
d3r2

|r1 − r2|
φ∗L(r2 − R)φp(r2) (30)

and

~̂S =
∑

αβ

~σαβ ĉ
†
LαĉLα . (31)

In formula (29), φp(r) are the wave functions of the itinerant electrons, constituting some arbitrary
orthonormal basis set with eigenvalues p, c†pα/cpα are creation/destruction operators of electrons in
states φp(r) with spin z-component α, ~σαβ is a vector consisting of αβ components of Pauli matrices

~σαβ = (σx,αβ , σy,αβ , σz,αβ) , (32)

~̂S is the spin operator of the impurity electron, φL(r) is a wave function of this localized electron,

centered at r = 0 and c†Lα/cLα are creation/destruction operators of electrons with spin z-component
α in state φLα(r). It is assumed that the impurity resides at r = R.
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Jkp is called an exchange integral and to do specific calculations using formula (29) we need to know
an explicit expression for impurity wave function φL(r). The situation simplifies if it is assumed that
the magnetic impurity is “small” in the sense that φp(R + ∆r) ≈ φp(R) for |∆r| < rimp, where rimp

is the decay length of the impurity wave function φL(r). Then, Hint simplifies to

Hint(R) = −J
∑

kp,αβ

φ∗k(R)φp(R) ~̂S~σαβ ĉ
†
kαĉpβ (33)

J = e2
∫
d3r1φL(r1)

∫
d3r2

|r1 − r2|
φ∗L(r2)

In this approximation, instead of an entire function φL(r), only a single fitting parameter J is needed
to write Hint.

14

Now, it should be understood, that the assumption, that the wave functions φp(r) can be considered
constant along the size of impurity, cannot be satisfied for all wave functions in any full set of or-
thonormal functions, because the higher the energy of an electron, the faster the spatial oscillations
of the wave function. But it also should be understood, that a scanning tunneling microscope probes
only a limited energy window and it’s sensible to assume, that if in that energy window wave func-
tions φp(r) can be considered constant along the length of the impurity, then it will be a reasonable
approximation.

Here it’s time for a short digression from theory to experiment. As [14] states “electrons occupying
surface states on the close-packed surfaces of noble metals form a two-dimensional nearly free electron
gas” (see also references in [14]). That means that 2D plane waves, described by a wave vector k, are
a good wave function basis for describing the surface electrons on a Cu surface. Using measurements
in [14], where the wave number k was calculated for various bias voltages, we find that for a bias
voltage −0.3 V (electrons with energy −0.3 eV with respect to the Fermi energy), the wavelength is
λ ≈ 52.4 Å and for a bias voltage 0.3 V , the wavelength is λ ≈ 24.2 Å. Various methods of calculations
and measurements of the Co-atom radius found in literature all give values ratom < 2 Å (see [15],
[16]), therefore, we conclude that the approximation of a strongly localized impurity is reasonable
here.

We choose the functions φp(r) to be eigenfunctions of the “free” Hamiltonian (without the Kondo
interaction part). Here another approximation comes in. We assume that the Co adatoms create an
impenetrable potential barrier for the electrons. This means, that in order to find basis set functions
we had to solve the 2D Schrödinger equation for a particle in an elliptic box. This is easier to do in
elliptic coordinates

x = t coshu cos v (34)

y = t sinhu sin v

where u ∈ [0,+∞), v ∈ [0, 2π) are new elliptic coordinates and t is an arbitrary parameter. If we
choose

t =
√
a2 − b2 (35)

ub = arctanh(b/a)

where a and b are the semi-axes of some ellipse x2/a2 + y2/b2 = 1, then the points

u ∈ [0, ub] (36)

v ∈ [0, 2π)

14Note, that when formula (33) is used for a plane wave basis φp(r) = exp(ipr/h̄)/
√

N it gives Hint =

− J
N

∑
kp,αβ

exp[−iRj(k − p)/h̄]~σαβ
~̂Sc†

kα
cpβ , which differs from the result in [13] by a minus sign in the exponent.

The reason is that [13] implicitly uses a tight binding approach, for details see Appendix A.
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cover the area of this ellipse.

The Schrödinger equation

∆φ+ k2φ = 0 (37)

k2 =
2m∗E

h̄2 ,

with E the energy of the electron, is transformed to

1

t2(sinh2 u+ sin2 v)

(∂2φ

∂2u
+
∂2φ

∂2v

)
+ k2φ = 0 (38)

in elliptic coordinates. Separation of variables shows [17], that the solution to equation (38) can be
written in terms of special functions, the elliptic cosine cem(q, v), which is an even function with
respect to the variable v, and the elliptic sine sem(q, u), which is an odd function with respect to u:

ψm(q, u, v) =
1

|ψm(q)|
Sem(q, u)sem(q, v) (39)

φm(q, u, v) =
1

|φm(q)|
Cem(q, u)cem(q, v)

where |ψm(q)| and |φm(q)| are the absolute values of corresponding functions15 and q is

q =
1

4
k2t2 . (40)

These functions are implemented numerically using Mathieu functions:

sem(q, v) = S(bm(q), q, v)

cem(q, v) = C(am(q), q, v)

where C(a, q, v), S(b, q, v) are even and odd Mathieu functions, m is an integer, am(q) and bm(q) are
characteristic functions, which guarantee that for a given value of q, the functions C(am(q), q, v) and
S(bm(q), q, v) are 2π-periodic in v.16 The functions Se and Ce are called the elliptic sine and elliptic
cosine of an imaginary argument17:

Sem(q, u) = S(−ibm(q), q, iu)

Cem(q, u) = C(am(q), q, iu) .

Besides solving the noninteracting Schrödinger equation (37), we have to satisfy the boundary condi-
tion

φm(ub, v) ≡ 0

ψm(ub, v) ≡ 0

or equivalently

Sem(q, ub) = 0 (41)

Cem(q, ub) = 0

15Absolute values are defined in a usual manner through the scalar product |f | =
√

〈f |f〉
16For details see, for example, [17] or [18].
17Despite their appearance they are real valued functions.
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which says that we assume an infinite strength potential wall. Solving equations (41), gives us a
discrete spectrum of energies for the system. For given valuesm and ub, these equations have an infinite
number of roots. Let’s denote the solutions of the Se-equations as qs

n(m,ub) and the solutions of the
Ce-equations as qc

n(m,ub) where n is a natural number, which numbers the solutions of equations (41)
for given m and ub:

Sem(qs
n(m,ub), ub) ≡ 0 ∀ n,m, ub

Cem(qc
n(m,ub), ub) ≡ 0 ∀ n,m, ub .

Then, using (40), the energy levels are

Es
m,n(ub) = E∗ qs

n(m,ub)

Ec
m,n(ub) = E∗ qc

n(m,ub) (42)

E∗ =
2h̄2

m∗t2
.

Once again, here Es are the energy levels corresponding to sine wave functions in (39), and energy
levels Ec correspond to cosine wave functions. Parameters t and ub are given by relations (35). When
m is fixed, n is good for numbering the energy levels Es or Ec in increasing order, but for the whole
collection Es

m,n, E
c
m,n neither m nor n nor the pair (m,n) is good for numbering, so after the energy

levels are found numerically, they are placed in order and assigned a new index.

In elliptic coordinates (34), the scalar product of functions f(u, v) and g(u, v) defined inside the
ellipse (36) is expressed as

〈f |g〉 =
t2

2

ub∫

0

du

2π∫

0

dv f∗(u, v)g(u, v)(cosh 2u− cos 2v) (43)

The eigenfunctions in Eq. (39) automatically turn out to be orthogonal for values of q found according
to (41)

〈
ψm

(
qs
n(m,ub)

)
| ψb

(
qs
a(b, ub)

) 〉
∝ δnaδmb〈

φm

(
qc
n(m,ub)

)
| φb

(
qc
a(b, ub)

) 〉
∝ δnaδmb〈

ψm

(
qs
n(m,ub)

)
| φb

(
qc
a(b, ub)

) 〉
= 0 ,

and the absolute values in the solutions (39) can now be expressed as

|ψm

(
qs
n(m,ub)

)
|2 =

t2

2

ub∫

0

du

2π∫

0

dv Se2m
(
qs
n(m,ub), u

)
se2m

(
qs
n(m,ub), v

)
(cosh 2u− cos 2v) (44)

|φm

(
qc
n(m,ub)

)
|2 =

t2

2

ub∫

0

du

2π∫

0

dv Ce2m
(
qc
n(m,ub), u

)
ce2m

(
qc
n(m,ub), v

)
(cosh 2u− cos 2v) . (45)

Let’s introduce a common notation for the sine and cosine eigenfunctions (we omit the dependence of
wave functions on ub to simplify our crowded notations a little bit):

χmni(u, v) =

{
ψm(qs

n(m,ub), u, v), if i = 0;
φm(qc

n(m,ub), u, v), if i = 1
(46)

Emni =

{
Es

m,n(ub), if i = 0;
Ec

m,n(ub), if i = 1
. (47)
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Then the one particle part of the Hamiltonian (28) can be written as

HKondo(R) =
∑

mni,α

Emnic
†
mni,αcmni,α − J

∑

mni,baj,αβ

χmni(R)χbaj(R) ~̂S~σαβ ĉ
†
mni,αĉbaj,β (48)

where c†mni,α/cmni,α are creation/destruction operators of states χmni(u, v) (46) with spin z-component
α; by R we denote the position of magnetic impurity and we used formula (33).

6 Matching experiment

Now we are in a position to discuss specific experimental data. Experiment shows [14], that the surface
plane waves, mentioned in Section 5, at k = 0 have energy E0 with respect to the bulk Fermi energy
of copper and E0 = −0.44± 0.01 eV . So, the bottom of the surface band lies below the Fermi energy.
Surface electrons have an effective mass m∗ ≈ 0.38me.

Let’s consider an ellipse made of Co-adatoms (see [9]) with a = 71.3 Å and eccentricity

ǫ =

√
1 −

b2

a2
= 0.5 (49)

That gives t ≈ 35.7Å, ub ≈ 1.32, energy “unit” (42) E∗ ≈ 5.06 · 10−21J ≈ 31.6 meV . Table 1 shows
eigenfunctions with corresponding energies (42) (sorted in increasing order) calculated by numerically
solving equations (41).

One goal of our calculations is to find the density of states of this “quantum corral” structure. When
the energy spectrum is discrete, the density of states is a sum of δ-functions:

ρ(r, E) =
∑

n

|ϕn(r)|2δ(E − En) (50)

where ϕn(r) are eigenfunctions of a system. The spatial densities of states |ϕn(r)|2 for the first 72
energy levels in the corral are shown in Figure (10).

Let’s return to figure (9), which we started our discussion from. When topograph images are taken,
the height of the STM’s tip above the sample surface, which is needed to maintain constant tunneling
current, is measured. This current is proportional to the densities of states both in the sample and
the tip and to the transparency of the potential barrier between them18:

I(r) ∝ ρt(EF )

∫ eV

0

T (EF + ǫ)ρc(r, EF + ǫ)dǫ , (51)

where T (ǫ) is the transparency of the potential barrier between the sample and the tip and ρc(r, ǫ)
is the density of states inside the corral; these are the states where electrons from the STM’s tip go
(for positive bias V ). Relation (51) has some assumptions inside, which need further explanation. It
assumes that the density of states in the tip can be approximated by the constant ρt(EF ) within the
interval ǫ ∈ (EF , EF + eV ). This is indirectly verified by the experiment [8], where the topograph
images didn’t depend on the material the tip was made of. The transparency of the potential barrier
in the quasi-classical (WKB) approximation is given by the expression (see [19])

T (ǫ) ∝ exp

(
−

2

h̄

∫ b(ǫ)

a(ǫ)

√
2m
(
u(x) − ǫ

)
dx

)
(52)

where the potential barrier profile is given by the function u(x) and the integration is performed over
the classically inaccessible region. We are going to make another assumption, which we won’t prove
rigorously. Namely, we will assume that T (ǫ) can be approximated by the constant T (EF ) in the
interval ǫ ∈ (EF , EF + eV ). Then equation (51) becomes

18As in [8] and [9] the bias V across the tunnel junction is the voltage of the sample measured with respect to the tip.
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Table 1: Shown are a few eigenfunctions, ordered according their energies for a 2D ellipse with semi-
axis a = 71.3 Å and eccentricity ǫ = 0.5. (u, v) are elliptic coordinates according to Eq. (34) with
t = ǫa. Note that these functions need to be normalized before using them in calculations.

Level number Energy, meV Wave function

1 0.013 Ce0(q, u)ce0(q, v)

2 0.031 Ce1(q, u)ce1(q, v)

3 0.036 Se1(q, u)se1(q, v)

4 0.057 Ce2(q, u)ce2(q, v)

5 0.061 Se2(q, u)se2(q, v)

... ... ...

40 0.413 Se6(q, u)se6(q, v)

41 0.419 Ce1(q, u)ce1(q, v)

42 0.448 Ce4(q, u)ce4(q, v)

43 0.452 Se1(q, u)se1(q, v)

44 0.466 Se4(q, u)se4(q, v)

45 0.472 Ce10(q, u)ce10(q, v)

46 0.472 Se10(q, u)se10(q, v)

I(r) ∝ T (EF )

∫ eV

0

ρc(r, EF + eV )dV (53)

We have found that inside the corral structure (to be more precise, within our approximation of
impenetrable walls) only discrete levels within Cu surface state band are allowed. So, instead of (53)
we will have

I(r) ∝ T (EF )
∑

EF <Ei<EF +eV

ρc(r, Ei) (54)

Topograph images are taken in the constant current mode. In this mode, the height of the tip is
adjusted in order to retain a constant tunneling current I(r) ≡ I. To extract the height of the tip for
a microscope, operating in the constant current mode, from the equation (53) or (54) we will need to
use the Simmons formula [20] for calculating the integral in the relation (52):

∫ x2

x1

√
f(x)dx ≈

√
f̄ (x2 − x1) (55)

where f̄ =
1

x2 − x1

∫ x2

x1

f(x)dx .
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Figure 10: Spatial densities of states for first 72 energy levels in the elliptic structure with major
semi-axis a ≈ 71.3Å and eccentricity e = 0.5. Energy increases from left to right and then top-down.
Labels in upper-left corners show whether it’s a sine or a cosine state. Red square shows the 42nd state
with E ≈ 0.448 eV . Measurements of copper surface bandwidth (BW ) give BW = 0.44± 0.01 eV , so
this is the closest to Fermi energy level.

We denote by d the distance between the tip and the copper surface. The Simmons formula allows us
to find a pretty precise approximation for the transparency of the tunnel barrier:

T (ǫ, d) ∝ exp

(
−

2

h̄

√
2m
(
ū(d) − ǫ

)
d

)
. (56)

We have written T (ǫ, d) as a function of the distance d as well as the energy ǫ here because the form
of the potential energy u(x) depends on the distance d. Substituting (56) into (54) we find

d ∝
h̄

2p̂(d, ǫ)

(
ln
(∑

ρc(r, Ei)
)
− ln I

)
(57)

where p̂(d, ǫ) is defined as

p̂(d, ǫ) =
√

2m
(
ū(d) − ǫ

)
. (58)

The last assumption we are going to use is that p(d,EF ) can be approximated by a constant p̂ for the
range of distances d encountered in the experiment. This one is most difficult to prove to be true and
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the only confirmation we have is a posterior agreement between our results and the experiment.

Finally, we have to take into account two peculiarities of the images. First of all, a constant background
is always substracted from the image data.19 This means that for each image a pixel with the minimum
intensity is found and it is taken as the black level. The pixel with maximum intenisty is considered to
be white. That is not something done by hand, it is what the imaging software does when it depicts
a 2-dimensional numerical array. Therefore when we are discussing images, we can omit the constant
term ln I as well as the “assumed to be constant” factor h̄/(2p̂) in (57). The second pecularity is
that if we are to create an image of a two dimensional data set Z(x, y), then images plotted using
lnZ(x, y) look indistinguishable from images plotted using Z(x, y) itself. So, we can conclude that for
simulating topograph images we can plot

∑

EF <Ei<EF +eV

ρc(r, Ei) . (59)

To include the effect of the atomic DOS of the Co atoms making up the corral, we add the function

ρat(r) = Y

[
1 −

1

R2
at

(r − rc)
2

]
(60)

to (59), where fitting parameters rc – the position of the atom, Rat – the atom radius, and Y –
image brightness, serve to reach agreement with experiment (Fig. 9). This means that for simulating
topograph images we have to plot dimag:

dimag ≡ ρat(r) +
∑

EF <Ei<EF +eV

ρc(r, Ei) (61)

Let’s examine the energy levels in Table 1. The bulk Fermi energy of copper is EF ≈ 0.44 eV . The
topograph images in the experiments [8] are taken for bias V = 0.01 V . Then the only energy level
belonging to the interval (EF , EF + eV ) is the level n = 42. By comparing the density of states for
this level in Fig. 10 to the topograph image in Fig. 9(b) we see that they do not match. The second
guess would be that the next level n = 43 – or may be even higher levels – contributes too. Fig. 11
shows 2D-plots of the function (61) where higher levels are accounted for.

Figure 11: Calculated dimag using (a) levels 42 and 43 (b) levels 42, 43 and 44 (c) experimental
topograph image from [8]. Brightness Y of the atomic states was adjusted to give best agreement
with experiment in figure (b).

From Fig. 11 we see, that the best agreement with experiment is achieved when (61) is calculated
using levels #42− 44. Here some explanations are in place why we include levels, which, for the bias
voltage of 10 mV should not contribute to the tunnel current. The reason for that is a limitation of
our approach, where we assume that atoms, making up the corral structure, create an impenetrable
potential barrier. In reality, this barrier is far from impenetrable. If instead we consider the potential
well with large but finite wall width and strength, we will discover that energy levels (a) broaden and
(b) shift; the energy spectrum becomes continuous. Out of these two processes – the level broadening
– will definitely lead to the fact, that wave functions other than #42 will contribute their density of

19Even if it wasn’t, the constant background is usually subtracted from experimental data.
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states to the region ǫ ∈ (EF , EF +eV ). Of course, these wave functions will differ from the ones found
in our model, but as we can see in Fig. 11 even the crudest approximation given by the expression (61)
works pretty well.

Now let’s see what happens to the topograph picture when we add a Co atom at one focus of the
ellipse. The inclusion of the atom has two effects: it creates a Coulomb potential barrier and also
interacts with electrons via the Kondo term in the Hamiltonian (48).

First we consider what happens to eigenstates within our model, and then we argue how our conclusions
for the model relate to the reality of the experiment.

To account for potential barrier, we need to find new eigenstates in the elliptic well with a point (or
may be finite) potential hill at a focus. The problem with this approach is that potential at a single
focus is not consistent with the elliptic coordinates we chose. So, we will have to do some handwaving.
Let’s consider a very high potential of a small size. It is understood that eigenfunctions will have to
vanish at this focus. But we know that sine solutions in (39) have the zero amplitude anyway. So, we
can make an important conclusion that sine solutions remain unaffected by the presence of an atom
at the focus.

Cosine solutions are more difficult to treat. As we have already said the placement of the atom at the
focus destroys the symmetry of the elliptical coordinate system. This means that the separation of
variables is not possible anymore and consequently we can’t give an answer in general (the analytic
one; numerical solution is, of course, still possible). But we can make some analogies. It can be shown
analytically that if, instead of an ellipse, we consider a circle barrier with an impenetrable potential
(not just a δ-function, but something more intense) in the center, then the only state having non-zero
amplitude in the center (the state with angular momentum l = 0) vanishes. So, we can speculate that
a very strong point barrier removes DOS at its position (meaning that it removes all states which
have a non-zero amplitude at the position of the potential).

Out of states #42 – 44 only states #43 and 44 are sine states, so only they will contribute to dimag

in (61). Fig. 12 shows the result of such a calculation.

Figure 12: Calculated dimag using levels 43 and 44.

There is still a problem here. The experimental topograph image with the Co atom at the focus (see
Fig. 9(a)), which the image in Fig. 12 is expected to reproduce, looks identical to the experimental
topograph image without the atom. Our dimag in Fig. 12, on the contrary, doesn’t look like the image
in Fig. 11(b). We will discuss this disagreement later.

Finally we calculate the difference of the topograph images, the image with the Co atom at the focus
– the image without the atom, to reproduce Fig. 9(c). The result is shown in Fig. 13. Also shown is
the topograph picture taken from experiment. We can call the agreement between them satisfactory.

Let’s return to the problem that the simulated topograph image in Fig. 12 doesn’t look similar to
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Figure 13: Comparison of the difference of topographic images with and without the Co atom at the
right focus (a) calculated ρat − ρ42 (b) experimental [9].

the measured topograph in Fig. 9(a). The source of this distinction is our assumption of an infinitely
high barrier (to prohibit levels with non-zero amplitude at the ellipse focus the potential should be
stronger than a delta-function). In the opposite limit of a very weak potential, we can treat the
problem perturbatively. We can see that the measured topograph with the cobalt atom at the right
focus is all but indistinguishable from the measured topograph with the atom. So, the experiment
tells us that the case of the weak potential is indeed realized. This conclusion makes our whole
approach, where we consider the potential created by Co atoms making up the wall impenetrable,
very questionable. But let’s proceed. In the first order perturbation theory, new eigenfunctions and
eigenenergies are given by formulas [19]:

ϕ̃n(r) = ϕn(r) +
∑

m 6=n

Vmn

En − Em

ϕm(r) (62)

Ẽn = En + Vnn

where Vmn are matrix elements of the perturbing potential (the Co atom potential) between unper-
turbed eigenstates |m〉 and |n〉:20

Vmn = 〈m|V̂ |n〉 . (63)

The simplest case to analyze is when the Co atom at the focus creates a delta-function potential:

V (r) = V0δ(r − R) (64)

where R points at the focus with the adatom. The matrix elements (63), the perturbed eigenfunctions
and energies (62) then become21

Vmn = V0ϕm(R)ϕn(R)

ϕ̃n(r) = ϕn(r) + V0ϕn(R)
∑

m 6=n

ϕm(R)

En − Em

ϕm(r) (65)

Ẽn = En + V0ϕ
2
n(R)

All sine eigenfunctions are zero at the ellipse foci, so they are not affected by the perturbing delta-
potential at all (in all orders of perturbation theory). They also don’t contribute to the sum in (65)

20By |n〉 or ϕn(r) we denote eigenfunctions (46) numbered using a single index n.
21Remember that all eigenfunctions are real valued.



21

when we calculate the perturbed cosine eigenfunctions. This means that the addition of an adatom
at the focus leaves states #43 and 44 intact (along with corresponding densities of those states) and
the perturbed density of the state #42 will be

ρ̃42(r) = ϕ̃2
42(r) = ρ̃42(r) + 2V0ϕn(r)ϕn(R)

∑

m 6=n

ϕm(R)

En − Em

ϕm(r) +O(V 2
0 ) . (66)

For small V0, Fig. 11(b) will stay the same, although the difference of topograph images with and
without Co atom dimag(Co)–dimag(no Co), will now be given be the relation

dimag(Co) − dimag(no Co) = 2V0ϕn(r)ϕn(R)
∑

m 6=n

ϕm(R)

En − Em

ϕm(r) +O(V 2
0 ) (67)

It’s hardly possible to say now what the image produced using (67) will look like only by looking at
the formula. A 2D-plot of the function (67) is shown in Fig. 14. Also shown is the corresponding
image from Fig. 9(c), which was measured in experiment.

Figure 14: The difference of topographic images with and without a Co atom at the right focus (a)
plotted using the formula (67) [perturbation theory approach, V0 < 0] (b) taken in experiment [9].

We see that the similarity between the two plots (experimental and simulated) is much better than in
Fig 13. Only the rightmost part of our picture, between the focus with the adatom and the boundary
is quite different from the experimental result. This is something we cannot explain within our model.
The picture shown was obtained for V0 < 0 (again, for imaging relation (67) the magnitude of V0

doesn’t matter). The change of the sign of V0 leads to change of black to white and vice versa. So,
our results tell us that if the potential scattering is the main source of the effects observed, then the
Co atoms create an attractive potential.

Now, remember that up to this point we didn’t take into account any effects caused by the Kondo term
in the Hamiltonian (48). Therefore it looks appropriate to conclude that even potential scattering
without taking into account the Kondo effect can reproduce many features seen in experiment. The
disadvantage of our approach – discrete energy levels – doesn’t allow us to study the spectroscopic
measurements dI/dV , so this is all we can do with the potential scattering effects.

The Kondo part is more difficult to treat theoretically, even with handwaving type of arguments.
Therefore let’s turn to the experimental evidence, which shows that when a Kondo atom is placed at
the copper surface the density of surface states is supressed to zero at the Fermi energy at the position
of the atom. We can rephrase this by saying that the Kondo atom prohibits the states around the Fermi
energy with a non-zero amplitude at the position of the atom. It is a very liberal explanation, but if we
accept it we will see, that the Kondo atom acts in the same way as an impenetrable potential barrier.
If a particular state has zero amplitude at the position of the Kondo atom, then the Hamiltonian (48)
says that this state and the atom will not interact at all. So, sine states will not be perturbed by
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the Kondo atoms, while the cosine states will. Such extremely simplified approach leads again to the
Fig. 13.

Unfortunately we didn’t succeed in performing precise (numerical renormalization group) calculations
applied to the corral eigenstates ϕn(r) which initially was the goal of our approach.

Finally, let’s address an issue, which we have with explaining experimental results. As we saw it is
possible to model topograph images satisfactorily even without the notion of the Kondo interaction.
But the experiment didn’t observe the images discussed here if the Kondo atom at the focus (Co or
Fe) was replaced by a non-Kondo atom (at least for the CO-molecule, which was tried). May be this
is indeed a proof that the potential scattering is irrelevant. Yet another possible explanation is that
the Kondo interaction leads to an effective potential scattering of surface electrons. One of possible
mechanisms is the well-known fact that the Kondo atoms create excess of the charge around them.
It is possible to say that the accumulation of the electronic charge is a sign of an effective attractive
potential.

Figure 15: (a) Schematic picture of the experimental setup (b) Calculated energy levels for the elliptic
structure together with experiment conditions.
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