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We show by means of the theory of order parameter phase fluctuations that the temper-
ature of the “closing” (or “opening”) of the gap (and pseudogap) in the electron spectra
of superconductors with anisotropic order parameter actually takes place within a finite
temperature range. Every Fourier-component of the order parameter has its own critical
temperature.
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1. Introduction

It is well known that it is not easy to build a self-consistent theory of the copper

oxide high-temperature superconductors (HTSCs) due to the necessity to take into

account different properties of the cuprates, in particular strong electron correla-

tions, low dimensionality of the electronic and magnetic properties, anisotropy of

the order parameter, pseudogap presence, disorder etc. It is extremely difficult to

include all these properties into the theory self-consistently. The choice of the prop-

erties is usually dictated by the aim of studies. Below we make an attempt to show

that it is possible to explain such an unusual phenomenon as smooth disappearing

(“closing”) of the pseudogap along the Fermi surface arcs from nodal points to

M-points ((0, π) or (π, 0)) of the Brillouin zone in the momentum space.
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2. Model and Main Results

It has been proved that the description of the superconductivity in the 2D metals

with arbitrary carrier density requires not two, as usual, but three self-consistent

equations (see Ref. 1). Two of them are well known. The first one is the gap equation,

which defines the order parameter. It can be written in the following form in the

case of a separable interaction:2

∆k =
V

N
γl(k)

∑

q

γl(q)
1

2π

∫ +∞

−∞

dε

exp(ε/T ) + 1
Im Tr[τ̂1Ĝq(ε)] , (1)

where

Ĝq(ωn) =
1

iωn − ξ(k)τ̂1 − ∆kτ̂3
, (2)

is the Matsubara fermion Green’s function in the Nambu representation, and

ξ(k) =
W

2
− W

4
(cos(kxa) + cos(kya)) − µ (3)

is a spectrum of one-particle Fermi excitations on the square lattice with the con-

stant a and with the bandwidth W . The spectrum energy is measured with respect

to the chemical potential µ. The order parameter in different pairing channels is

∆(k) = ∆l(T )γl(k), where l stands for the symmetry of the order parameter. In

the s-wave pairing channel we choose

γs(k) = 1 ,

in the p-wave channel we choose

γp(k) = sin(kxa) ,

and, finally, in that related to the HTSCs d-wave pairing channel

γd(k) = cos(akx) − cos(aky) .

ωn = (2n + 1)πT are the Matsubara Fermi-frequency, τ̂i are the Pauli matrices,

and V is the parameter which characterizes the fermion attraction (the separable

pairing potential is chosen in the following form:

Vl(k,q) = V γl(k)γl(q)) .

The second equation can be written as

nf = 1 − 1

N

∑

k

1

π

∫ +∞

−∞

dε

exp(ε/T ) + 1
Im Tr[τ̂3Ĝk(ε)] . (4)

This equation allows one to connect the number of the mobile (doped) carriers

in the conducting band with the dispersion law (3) and the chemical potential

(usually, holes are the carriers in the copper oxide HTSCs). Generally, the value of

the chemical potential is not equal to the value of the Fermi energy (see Ref. 1).
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After the integration over the energy ε and by using Eqs. (2) and (3), one can

transform Eqs. (1) and (4) to a more familiar form:

1 = V

∫

d2k

(2π)2
γl(k)2

tanh[E(k)/(2T )]

2E(k)
, (5)

nf =

∫

d2k

(2π)2

[

1 − ξ(k)

E(k)
tanh

(

E(k)

2T

)]

, (6)

where E(k) =
√

ξ2(k) + |∆(k)|2 is the excitation energy of the quasi-particles in

the superconducting state. The function E(k) is equal to zero at the so-called nodal

points (with |kx| = |ky| = |kF |, where kF is the Fermi momentum).

The system (5, 6) is the self-consistent system of equation of the BCS theory. Its

solution in the 2D case describes the temperature dependence of the gap (amplitude

of the order parameter) and of the chemical potential at given value of nf . It is

impossible to estimate the correct value of the critical temperature from this system,

since the critical temperature in the 2D case is equal to zero due to the long-wave

fluctuations of the phase of the order parameter.3 However, there is another phase

transition in the 2D systems — the Berezinskii–Kosterlitz–Thouless (BKT) phase

transition with the critical temperature T = TBKT at which the correlation of the

order parameter changes its space dependence from the exponential (at T > TBKT)

to the power law (at T < TBKT). This transition was studied most completely in

the case of the spin XY -model with the following Hamiltonian:4

HXY =
J

2

∑

n,ñ

(θn − θñ)2 ,

where J is the exchange coupling and θn, θñ are the phases of the spin vectors on

the nearest sites n and ñ. The critical temperature of the BKT transition is defined

by the following equation:

TBKT =
π

2
J . (7)

The order parameter of the superconducting metal is a complex (two-

component) function, and usually it can be approximated as following (see, for

example Ref. 5):

Φ(r1, r2) ' ∆(r)eiθ(R) ,

where r = r1−r2 and R = (r1+r2) are the relative coordinate and the center of mass

coordinate of the pair, correspondingly. In the case of the long-wave approximation

the kinetic part of the thermodynamic potential has the form of HXY , but in this

case the superconducting rigidity plays the role of the exchange parameter. This

parameter is a function of Tc ≡ TBKT, µ and ∆l(Tc). Equation

Tc =
π

2
J(Tc, µ,∆l(Tc)) (8)

makes the system of equations (5), (6) and (8) closed. This system of equations

allows us to find the gap, the chemical potential and the critical temperature Tc.
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The expression for the function J(Tc, µ,∆l(Tc) for the case with an anisotropic

order parameter can be found in the complete analogy with the isotropic s-case6

(see also Refs. 1, 7 and 8). It has the following form (Appendix A):

J(Tc, µ,∆l(Tc)) =
W

16
Tc

∞
∑

n=−∞

d2k

(2π)2
Tr

[

τ̂3Gk(iωn)eiδωnτ̂3 +
W

8
k2G2

k(iωn)

]

=
W

16

[

nf −
W

16Tc

∫

d2k

(2π)2
k2 1

cosh2(E(k)/(2Tc))

]

; (δ → 0) .

(9)

This expression together with (8) defines the equation for the critical temperature

of the 2D superconducting metal with arbitrary carrier density:

Tc =
π

32
W

[

nf −
W

16Tc

∫

d2k

(2π)2
k2 1

cosh2(E(k)/(2Tc))

]

. (10)

The solution of the system of self-consistent equations (5), (6), and (10) can

be found analytically in the s-wave case with quadratic dispersion of the quasi-

particles, ξ(k) ∼ k2. In this case ∆l(0) ∼ √
nf , Tc ∼ nf and µ is always negative

when the fermion density nf → 0. In the case case of more general dispersion (see,

for example Ref. 3), and, moreover, in the case of the anisotropic order parameter,

the solution can be found only numerically. This solution gives us the dependencies

of Tc, µ and ∆l(Tc) on nf . On the other hand, it is possible to find the amplitude

∆l(T ) as a function of T from Eqs. (4) and (5). The solution of these equations

at ∆l(T ) = 0 gives us the carrier density dependence of the critical mean-field

temperature TMF
c in the l-pairing channel. This temperature does not correspond

to any observable phase transition, since there are no phase transitions in the 2D

systems, except for the BKT-transition as it was mentioned above.a The latter

transition is the only phase transition (in our case the superconducting transition)

in the metal with inter-fermion attraction, despite the fact that there is no general

spontaneous symmetry breaking in all the system6 (for details, see Ref. 1).

The solution of the system of equations (5), (6), and (10) in the s-wave pairing

channel is presented in Figs. 1 and 2. It is important to note that the system of

equations can be analyzed analytically in this case. It is easy to see the complete

symmetry of the solutions with respect to the point nf = 1 (the case of half-filling),

what was already mentioned in Refs. 9 and 10. The two-particle (local) bound

states exist at any value of V/W at small values of nf (or 2− nf , when we consider

the hole pairing). In other words, there is no threshold value of the coupling for

the bound state formation in the s-wave pairing channel in the 2D case. In this

aIt is necessary to mention that usually the temperature T MF
c is not considered in the case of the

2D XY-model. Being rather high (T MF
c ∼ 4J for the square lattice) this temperature shows when

and where (above TMF
c ) the spin system can be considered in the paramagnetic state, i.e. where

the average spin modulus on the lattice is zero.
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Fig. 1. The carrier density dependence of (a) ∆s and (b) µ at T = 0 and different values of V
in the s-wave pairing channel.
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Fig. 2. The carrier density dependence of (a) T MF
c and (b) Tc at different values of V in the

s-wave pairing channel.
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Fig. 3. The carrier density dependence of the ratios (a) 2∆s(T = 0)/TMF
c (b) 2∆s(T = 0)/Tc at

different values of V in the s-wave pairing channel.
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case the chemical potential is negative at any value of V/W and small enough

nf , which indicates the crossover from Bose–Einstein condensation regime to BCS

superconductivity with carrier density increasing (or coupling decreasing).11,12 As

it follows also from these figures, the following inequality Tc � TMF
c is always

correct, and the carrier density dependencies are close to those found analytically

in the case of the quadratic dispersion:

TMF
c ∼ √

nf , Tc ∼ nf ,

in the low carrier density limit. The canonical BCS relation 2∆s(0)/T
MF
c = 3.52

holds at any carrier density except at very low values of nf (see Fig. 3), but the

relation 2∆s(0)/Tc is increasing with carrier density decreasing, since it is easy to

see that ∆s(0)/Tc ∼
√
nf at small nf .

In the cases of the anisotropic p-wave and d-wave pairing (Figs. 4–6 and 7–9,

correspondingly) the behavior of the superconducting parameters with doping is
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Fig. 4. The same as in Fig. 1 for the p-wave pairing case.
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Fig. 5. The same as in Fig. 2 for the p-wave pairing case.
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Fig. 6. The same as in Fig. 3 for the p-wave pairing case.

 0

 0.5

 1

 0  0.5  1

∆
d
(0

)/
W

nf

V/W=2.0
1.4
1.0
0.6

(a)

-0.5

 0

 0.5

 1

 0  0.5  1

µ
/W

nf

V/W=2.0

1.4

1.0

0.6

(b)

Fig. 7. The same as in Fig. 1 for the d-wave pairing case.
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Fig. 8. The same as in Fig. 2 for the d-wave pairing case.
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Fig. 9. The carrier density dependence of the ratios (a) 4∆d(T = 0)/TMF
c and (b) 4∆d(T = 0)/Tc

at different values of V in the d-wave pairing channel. (The maximal value of the gap in the d-wave
pairing case is 2∆d(T = 0), not ∆d(T = 0) like in the s- and p-wave cases.)

qualitatively the same. The only difference is that the crossover to superfluidity

takes place only above some critical values of V . The local pairs with non-zero

orbital momentum can be formed only when the attraction is strong enough.13,14

In the cases of the moderate or low attraction the chemical potential of the system

is positive at any value of nf , therefore only Cooper p- and d-wave pairs can ex-

ist in this case. The chemical potential in this case practically coincides with the

Fermi energy. As it follows from Figs. 5 and 8, the relation Tc � TMF
c holds also in

these cases, and the ratios 2∆p(0)/T
MF
c and 2∆d(0)/T

MF
c are even higher in com-

parison with the s-wave case, which shows that the isotropic condensate is more

stable with respect to the thermal fluctuations. The region between Tc and TMF
c ,

where the superconducting fluctuations are incoherent and rapidly decay and the

order parameter modulus is finite, should be interpreted as the pseudogap region.

Above TMF
c (which in some papers (for example, in Refs. 15 and 16) is called the

temperature of the decay of superconducting fluctuations Tscf) the gap in the su-

perconducting spectrum disappears, while there is no phase transition at the point

TMF
c or around it.

There is another principal difference between Tc and TMF
c due to the anisotropy

of the electron spectra in the superconducting phase. The temperature Tc is critical

temperature of the phase transition, and therefore it is unique for all the system

and for all its excitations. This temperature can be measured as the temperature

below which the resistivity goes to zero, or by the Meissner effect, for example.

On the other hand, this statement cannot be used with respect to TMF
c . This tem-

perature is not the critical temperature of any phase transition in the 2D system,

similarly in the case with the s-wave pairing. The important question is whether the

critical temperature of the formation of different Fourier-components of the order

parameter is unique. Even the temperature Tc can have such values that the fol-

lowing rations are correct at different directions of the momentum k: Tc ≤ ∆(k), or
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Tc ≥ ∆(k), including Tc � ∆(k). More important question is whether the order pa-

rameter modulus forms at any value of k. A simple (and, in some sense qualitative)

answer to this question can be given by using the canonical BCS ratio rewritten in

the following form:

2∆l(T = 0)

TMF
c

→ 2∆l(T = 0)|γl(k)|
TMF

c (k)
, (11)

which shows that every Fourier-component of the anisotropic order parameter has

its own “closing” critical temperature. It should be emphasized, however, that the

critical temperature for the molecular field does not correspond to any phase tran-

sition in the 2D system. Moreover, this temperature is a thermodynamic quantity,

and if it would describe some phase transition, it should be referred to the or-

der parameter as whole. We, nevertheless, suppose that such a ratio can be used

for a qualitative description of the pseudogap “closing-opening” in underdoped

anisotropic superconductors.

The relation (11) is an estimation which actually defines the temperature

TMF
c (k) = TMF

c |γl(k)| (or Tscf(k)). As it follows from this relation, the gapped

quasi-particle spectra of the 2D superconductor with anisotropic order parameter

shows its momentum dependence also, when the temperature changes. It is impor-

tant that the gap disappears continuously from the nodal point, where γl(k) = 0

at any T , to the M -points, where the gap and the corresponding temperature TMF
c

are maximal, with temperature increasing. The gapless (or, actually “pseudogap-

less”) character of the spectra will cover larger parts of the Fermi surface with

temperature increasing at any values of k, at which T = TMF
c (k). This behavior

was observed in the ARPES experiments (see recent Refs. 17 and 18 and references

therein).

Thus, it is shown that the self-consistent study of the phase fluctuations of the

superconducting order parameter allows one to describe qualitatively the anisotropy

of the pseudogap and its disappearance within a rather wide range of temperatures.
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Appendix A. Derivation of the Expression for J

In order to obtain the effective parameter J for the HXY Hamiltonian (9), let us

derive the effective thermodynamic potential of the superconducting system up to

the second order in the gradient of the order parameter phase. For this let us write

the model Hamiltonian of the superconducting system in the explicit form:
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H(τ) = −
∑

σ,i,j

tijψ
†
iσ(τ)ψjσ(τ) + (W/2 − µ)

∑

σ,i

ψ†
iσ(τ)ψiσ(τ)

− 1

2

∑

σ,i,j

ψ†
iσ(τ)ψ†

jσ̄(τ)Vi,jψjσ̄(τ)ψiσ(τ) , (A.1)

where ψiσ(τ) is a Fermi-field with spin σ =↑, ↓ on site i. τ is an imaginary time

and ti,j is the nearest inter-plane hopping operator. The interaction potential Vi,j

corresponds to the potential Vl(k,q) in the momentum space (Section 2).

The partition function can be written as

Z =

∫

Dψ†Dψ exp



−
∫ β

0

dτ





∑

σ,i

ψ†
iσ(τ)∂τψiσ(τ) +H(τ)







 . (A.2)

Let us apply the Hubbard–Stratonovich transformation with bilocal fields φij(τ)

and φ†ij(τ) in order to study the superconducting properties of the system:

exp





∫ β

0

dτ
∑

ij

ψ†
i↑(τ)ψ

†
j↓(τ)Vijψj↓(τ)ψi↑(τ)





=

∫

Dφ†Dφ exp

[

−
∫ β

0

dτ
∑

i,j

(

|φij(τ)|2
Vi,j

− φ†ij(τ)ψi↓(τ)ψj↑(τ)

−ψ†
i↑(τ)ψ

†
j↓(τ)φij(τ)

)]

. (A.3)

The order parameter can be expressed as φij(τ) = ∆ij(τ)e
iθij(τ), where ∆ij(τ)

is the modulus of the order parameter and θij(τ) is its phase. It is natural to

assume that φij(τ) ' ∆(τ, r)eiθ(τ,R), where r = Ri − Rj is the relative coordinate

and R = (Ri + Rj)/2 is the coordinate of the center of mass. This approximation

corresponds to the case when the dynamics of the Cooper pairs is described by

the order parameter modulus the symmetry of which depends on the relative pair

coordinate, and the motion of the superconducting condensate is described by the

order parameter phase which slowly varies in space, which can be described by

center of mass coordinate.

Introducing the Nambu spinors

Ψi(τ) =

(

ψi↑(τ)

ψ†
i↓(τ)

)

, Ψ†
i (τ) = (ψ†

i↑(τ) , ψi↓(τ)) .

and putting

ψσ,i(τ) = χσ,i(τ)e
iθi(τ)/2 , ψ†

σ,i(τ) = χ†
σ,i(τ)e

−iθi(τ)/2 .
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one can get in the continuum limit

φ†ij(τ)ψi↓(τ)ψj↑(τ) + ψ†
i↑(τ)ψ

†
j↓(τ)φij(τ)

→ φ†(τ,Ri,Rj)Ψ
†(τ,Ri)τ−Ψ(τ,Rj) + Ψ†(τ,Ri)τ+Ψ(τ,Rj)φ(τ,Ri,Rj)

' ∆(τ,Ri − Rj)Υ
†(τ,Ri)τxΥ(τ,Rj) , (A.4)

where Υj(τ, r) and Υ†
j(τ, r) are “neutral” Nambu spinor operators:

Υ(τ, r) =

(

χ↑(τ, r)

χ†
↓(τ, r)

)

, Υ†(τ, r) = (χ†
↑(τ, r), χ↓(τ, r)) .

τ± = 1
2 (τx ± τy) are the combinations of the Pauli matrices τx and τy .

Substitution of (A.4) in (A.3) and integration in (A.2) over neutral Nambu

spinors give the following expression for the partition function

Z =

∫

∆D∆Dθe−βΩ(∆,θ) ,

where the thermodynamic potential is

βΩ(∆, θ) =

∫ β

0

dτ

∫

d2r
∆(τ, r)2

V (r)
− Tr lnG−1 .

The Nambu spinor Green function G is

G−1 = G−1 − Σ ,

where G−1 is a part of the inverse Green’s function which does not depend on the

order parameter phase:

G−1(τ1, τ2,Ri,Rj) = 〈τ1,Ri|G−1|τ2,Rj〉

= δi,jδ(τ1 − τ2)[−∂τ1
− τz(4t− µ)]

− δi,j±aδ(τ1 − τ2)τzt+ τx∆(τ1 − τ2,Ri − Rj) .

The self-energy Σ is

Σij(τ1, τ2) = 〈τ1,Ri|Σ|τ2,Rj〉

= δ(Ri − Rj)δ(τ1 − τ2)

[

iτz
2
∂τ1

θ(τ1,Ri) −
i

4m
∇2

Ri
θ(τ1,Ri)

+
τz
8m

(∇Ri
θ(τ1,Ri))

2 − i

2m
∇Ri

θ(τ1,Ri)∇Ri

]

.

We assumed that the gradients are small and we used the mass variable m which in

the continuum limit connected with the hopping parameter in the following way:

m = 1/(a2t) .



July 19, 2004 11:35 WSPC/140-IJMPB 02511

2046 V. M. Loktev & V. Turkowski

We suppose that the order parameter phase fluctuations are small. The kinetic

(∇θ-dependent) term of the thermodynamic potential can be expanded in powers

of the self-energy Σ:

βΩkin(∆, θ) = Tr

∞
∑

n=1

1

n
(GΣ)n . (A.5)

In this case, to get the thermodynamic potential up to the second order in ∇θ
we neglect all the terms in (A.5), except for n = 1, 2. Also, we neglect the time

dependence of θ and the second derivative ∇2θ. It is possible to show that the

kinetic part of the effective potential in this case has the following structure:

Ωkin(∆, θ) =
J

2

∫

d2r(∇θ)2 , (A.6)

where J is given by Eq. (9).
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