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Lifshitz points in blends of AB and BC diblock copolymers
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PACS. 83.70Hq – Heterogeneous liquids: suspensions, dispersions, emulsions, pastes, slurries,
foams, block copolymers, etc.

PACS. 64.60Cn – Order-disorder transformations; statistical mechanics of model systems.
PACS. 83.80Es – Polymer blends.

Abstract. – We consider micro- and macro-phase separation in blends of AB and BC flexible
diblock copolymers. We show that, depending on architecture, a number of phase diagram
topologies are possible. Microphase separation or macrophase separation can occur, and there
are a variety of possible Lifshitz points. Because of the rich parameter space, Lifshitz points of
multiple order are possible. We demonstrate Lifshitz points of first and second order, and argue
that, in principle, up to 5th-order Lifshitz points are possible.

Introduction. – The phase behaviour of block copolymer melts is remarkably rich. In
a blend of homopolymers only macrophase separation (with wave number q∗ = 0) occurs.
Macrophase separation in a block copolymer melt is prevented by the chemical connectivity of
the constituent blocks, which leads to microphase-separated structures with q∗ 6= 0, typically
corresponding to structural periods L ' 10−100 nm [1, 2]. In a blend containing a block
copolymer melt and one or more molten homopolymers, microphase separation of the block
copolymer can compete with macrophase separation of the homopolymers at low temperatures
[1].

In a binary blend of a block copolymer and a homopolymer, the homopolymer swells the
microphase-separated structure formed by the copolymer, if the homopolymer chain length is
less than or equal to that of the corresponding block [1, 3]. On the other hand, macrophase
separation can occur for homopolymer chains longer than the corresponding block. In a
ternary blend, block copolymer added to a blend of homopolymers acts as a compatibilizer
to prevent macrophase separation or reduce the lengthscale associated with the macrophase-
separated structure [1,4]. A similar interplay between micro- and macro-phase separation has
recently been explored experimentally for AB/AB diblock copolymer blends by Hashimoto
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and coworkers [5]. Recently, self-consistent field theory has been applied to examine the
phase behavior of binary homopolymer/copolymer blends [6-8], blends of two homopolymers
with block copolymer [9, 10] and binary blends of block copolymers [11, 12]. Particularly
interesting critical phenomena have been predicted for certain blends of copolymer with one
or two homopolymers. The latter case was first studied using Landau mean-field theory, em-
ploying the random phase approximation (RPA) [13,14]. In addition to lines of critical points
corresponding to macrophase separation or microphase separation, mean-field theory predicts
that Lifshitz points can occur at the boundary between disordered, uniformly ordered and
periodically ordered phases [13, 14]. The wave number for microphase separation approaches
zero continuously as the Lifshitz point is approached [15]. The presence of a Lifshitz point in
the phase diagram for blends of two polyolefin homopolymers and the corresponding diblock
was first inferred experimentally via small-angle neutron scattering by Bates et al. [16], which
indicated a growing correlation length extrapolating to an apparent Lifshitz point. However,
subsequent work showed that composition fluctuations destroy the mean-field Lifshitz point
and a microemulsion phase becomes stable [17]. Mean-field theory can then be used to locate
the region of microemulsion stability via the virtual Lifshitz point.

In contrast to these studies of copolymer/homopolymer blends and blends of AB diblocks,
we are unaware of any experimental work on blends of an AB diblock with a BC diblock. This
letter presents some predictions for these systems, which should stimulate future experimental
work. We consider only flexible polymers, and employ the RPA, first applied to AB diblocks
by Leibler [18], to locate spinodal points for macro- or micro-phase separation, and to compute
the wave numbers and eigenvectors of the unstable modes. We use this information to
calculate the Lifshitz points in the phase diagrams, as functions of molecular architecture.
This approach is expected to be valid for long, weakly segregated, chains. Generalization
of the approach outlined here to allow for composition fluctuations and finite chain length
should be straightforward, using methods developed for pure block copolymer melts [19, 20].
A theory for micelle formation in blends of strongly segregated AB and BC diblocks has
recently appeared [21]; and microemulsion phases in ternary blends with triblock copolymers
have been studied theoretically [22,23] in weak segregation; but we are unaware of any previous
work on the weak segregation regime of AB-BC systems.

Model. – Let φ be the volume fraction of the AB diblock; f and αf the fractions of the A
and C components in the AB and BC copolymers, respectively; and N and βN the respective
monomer numbers. For simplicity we assume equal monomer volume and statistical segment
length for all species. We work in terms of a vector of fluctuations ψ,

ψ = {ψA, ψB, ψC}, (1)

where ψi is the deviation of the volume fraction of species i from its mean value. It is
straightforward to calculate the correlation functions

Gij(q) = 〈ψi(q)ψj(−q)〉 (2)

using the RPA [18], including three Flory χ parameters χAB, χAC, and χBC. It is convenient
to define the basis set

e0 =
√

1
3 {1, 1, 1} , e1 =

√
2
3

{
1
2 ,−1, 1

2

}
, e2 =

√
1
2 {1, 0,−1} , (3)

where ψ ·e0 is a volume-changing fluctuation and ψ ·e1 and ψ ·e2 are physical fluctuations in
an incompressible system. The fluctuation ψ·e1 =

√
3/2(ψA +ψC) corresponds to separating

the A and C blocks from the B block, and is primarily a microphase separation mode, since
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Fig. 1. – Fluctuation eigenvalues as a function of wave vector (units of R−1
g , where Rg is the radius

of gyration) for f = 0.17, α = 1, β = 1, rAC = 0.49, rBC = 2.9, for φ = 0.4 and φ = 0.6 and a range of
χ values. Variations of λ1 with χ are shown, but not visible (b).

it is prohibited at q = 0 by chain connectivity. The other mode, ψ ·e2 =
√

1/2 (ψA − ψC),
corresponds to demixing the A and C blocks, and in the limit q → 0 corresponds to demixing
the blend. Hence we term this a macrophase separation mode. A general fluctuation at q 6= 0
is an admixture of these two modes, while only mode e2 is present for q = 0.

The spinodal is given by the determinant of the 2×2 matrix of Gij(q) in the incompressible
{e1,e2} subspace,

Γ(q) = G11(q)G22(q)−G12(q)2, (4)

where Gab(q) = ea ·G·eb. Γ(q) is a product of the fluctuation eigenvalues. These eigenvalues
have minima at q = 0 (macrophase separation) or q∗ 6= 0 (microphase separation). The
spinodal point is given by that eigenmode whose eigenvalue first vanishes upon reducing the
temperature. For q = 0 this eigenmode is e2, while otherwise it is an admixture of e1 and e2.
The small-q expansion of Γ has the form

Γ(q) =
a0 + a1q

2 + a2q
4 + a3q

6 + . . .

b1q2
. (5)

To parametrize the problem, we let χ ≡ χABN, rAC ≡ χAC/χAB, and rBC ≡ χBC/χAB. The
phase diagram may now be calculated in the (χ, φ)-plane, with rAC, rBC, f, α, β as independent
material parameters. Obviously the system is far richer (and more complicated) than that of
simple diblocks. Rather than systematically calculating phase diagrams, we first discuss the
nature of macro- and micro-phase separation, and then examine the character of the possible
Lifshitz points.

Microphase vs. macrophase separation. – In the AB/AB limit (χAC = 0, χAB = χBC)
macrophase separation cannot occur; while for large enough χAB macrophase separation is
possible. The nature of the unstable modes can be seen by examining the eigenvalues λ1(q)
and λ2(q) of the fluctuation matrix (in the 2-dimensional incompressible subspace).

Typical results are shown in fig. 1 for a blend with f = 0.17, β = α = 1.0, rAC = 0.49, rBC =
2.9, for compositions φ = 0.4 and φ = 0.6. One eigenvalue (λ1) diverges at q = 0, and the
other (λ2) is finite. We term these the microphase and macrophase modes, respectively. In
the limit q → 0, the microphase mode corresponds to e1 and the macrophase mode to e2,
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Fig. 2. – Spinodal diagrams for β = 1, α = 1, for f = 0.13 (a) and f = 0.17 (b), for α = 1, β = 1,
rAC = 0.49, rBC = 2.9. Thick lines denote microphase spinodals, dotted lines denote macrophase
(liquid-liquid) spinodals, and the filled circles are the microphase endpoints. (c) shows the contribution
of the microphase separation mode e1 =∼ ψA +ψC along the microphase separation lines for f = 0.17.

while at finite q these modes are (orthogonal) linear combinations of e1 and e2. For φ = 0.4
a microphase separation transition spinodal is located at χ = 6.063, at which point the local
minimum in λ2(q) becomes negative at finite q, fig. 1a (note that there are actually non-zero
cubic terms ψ3 in the free energy at this point, so that the spinodal is preempted by a first-order
transition). For φ = 0.6, however, the spinodal occurs to macrophase separation, since λ2 first
becomes negative (fig. 1c), upon increasing χ, for q = 0. The microphase mode (λ1, not shown)
has a minimum at finite q, but remains positive. We define the microphase endpoint as the
termination of the spinodal line for microphase separation on the spinodal line for macrophase
separation. For this system microphase endpoints occur at φ = 0.546 and φ=0.706 (fig. 2b).
The instability of the macrophase mode can be easily understood, since an A-B homopolymer
melt requires χN ∼ 2 for macrophase separation, and the corresponding A-B diblock melt
requires χN ' 10.5 for microphase separation. Hence pure microphase separation is more
costly, and if the system can take advantage of some macrophase separation (i.e. including
some component of the eigenvector e2), it will do so.

Spinodal diagrams are shown in fig. 2a, b. Since the two diblocks are identical in architecture
and molecular weight, the phase behaviour results solely from the chemical differences between
A and C, through the χ parameters. Lowering the the temperature induces an instability to
either macrophase or microphase separation, depending on copolymer asymmetry and blend
composition. For diblocks with f = 0.13 the disordered phase is unstable to macrophase
separation for φ & 0.246, and to microphase separation for blends with φ . 0.246 (fig. 2).
The asymmetry about φ = 0.5 is due to the distinct temperature dependence of the three
χ parameters. Generally the bimodal associated with the macrophase spinodal preempts the
microphase endpoint and we expect, with increasing χ, macrophase-macrophase coexistence,
macrophase-microphase coexistence, and microphase-microphase coexistence. As the copoly-
mers become more symmetric, the region of macrophase separation narrows, and the critical
point for macrophase separation coincides with the microphase endpoint at a copolymer volume
fraction fL ' 0.17 (fig. 2b). Such a point is in fact a Lifshitz point.

Figure 2c shows the portion of the eigenmode for the microphase instability which is in
fact the microphase eigenmode e1, along the lines of microphase transitions for f = 0.17. At
the Lifshitz point (and the other microphase endpoint) there is an infinitesimal amount of
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Fig. 3. – (a): Microphase (thick lines) and macrophase (thin lines) spinodals for points A (�), B,
and C (N) in (b) and (c), for rAC = 1, rBC = 3. First-order Lifshitz points are denoted by •. (b) and
(c): Lines of Lifshitz points for various rAB, rBC. Thin lines are first-order Lifshitz points for α = 1,
which end on lines of second-order Lifshitz points (thick lines) at •’s. Along the second-order lines
α 6= 1, except for the intersection with the first order lines. The ranges of the second-order lines are
α ∈ (0.590, 1.30)[rAC = 1, rBC = 1.5], α ∈ (0.592, 2.32)[rAC = 1, rBC = 2], α ∈ (0.709, 5.00)[rAC =
1, rBC = 3], α ∈ (0.64, 1.08) [rAC = 1.3, rBC = 1], where low α is to the left and high α to the right in
(b) and (c).

e1, and the majority of the instability is in the macrophase mode, e2. As the pure system is
approached (either φ = 0 or φ = 1) the fraction of e1 increases but, interestingly, does not
approach 1. This is due to the chemical asymmetry between A and C.

Lifshitz points. – As with a homopolymer blend, the critical composition φc is given by
∂a0/∂φ = 0, yielding φc =

√
β/(1 +

√
β) [24]. At φc the critical point χc for macrophase

separation is given by a0 = 0. If a1 > 0 macrophase separation occurs directly from the
disordered state; while for a1 < 0 microphase separation at finite wave number q∗ occurs
directly from the disordered state, hence preempting macrophase separation. The limit q∗ = 0
defines a point at which the line of microphase separation transitions meets the spinodal for
macrophase separation, determined by a0 = a1 = 0. By tuning the material parameters we
can easily find a first-order Lifshitz point, where a0 = a1 = 0 at the critical point, φc; and a
second-order Lifshitz point, at which a0 = a1 = a2 = 0 at φc [15]. In principle, one may tune
the material parameters further to find third- (a3 = 0), fourth- (a4 = 0), and fifth- (a5 = 0)
order Lifshitz points. For example, for fixed rAB, rBC and α a second-order Lifshitz point can
be found by adjusting β, f , and χ. A third-order Lifshitz point can, in principle, then be
found by adjusting α so that a3 = 0; and rAB and rBC could then be adjusted to find fourth
and fifth-order Lifshitz points (with a4 = 0 and a5 = 0, respectively). This is quite a large
parameter space, and we have succeeded only in finding first- and second-order Lifshitz points.

Figure 3 shows lines of Lifshitz points calculated for various parameters (b,c), and represen-
tative spinodal diagrams (a). We stress that the binodals for macrophase separation, as well



88 EUROPHYSICS LETTERS

as various microphase structures, will considerably complicate these diagrams. Nonetheless,
the Lifshitz points (e.g., fig. 3a) A and C are the lowest-χ features in their phase diagrams,
and should be accessible directly from the disordered state. The Lifshitz lines are shown
both in the (χ, φ)-plane (indicating where in the phase diagram to look), as well as in the
(f, β)-plane, indicating the trajectory in architecture space. The first-order Lifshitz lines for
α = 1 end, at small β, on a second-order Lifshitz line which traces out a trajectory in (β, α, f)
space. The projections of these lines onto the (f, β)-plane are shown as thick lines in fig. 3b,c.
The second-order lines end at small β (and α) where a stable root no longer exists; at this
point (such as C) the coefficient a3 approaches zero, although our numerics cannot find a
stable solution with a0 = a1 = a2 = a3 = 0 (which would signify a third-order Lifshitz
point). The nature of the spinodal diagram for C suggests that the macrophase separation
window could indeed vanish at third-order Lifshitz point for certain values of the parameters.
The higher-order Lifshitz behavior is indicative of more than one length scale competing for
stability, as would be expected for diblocks which each have a preferred lengthscale. For large
β (and α), the second-order Lifshitz lines remain stable and do not end.

Summary. – We have examined some aspects of phase separation in AB/BC diblock
copolymer blends. Both macro- and micro-phase separation can occur, and microphase sepa-
ration is a combination of the fundamental macrophase and microphase eigenmodes. We have
demonstrated the possiblity of Lifshitz points of first and second order, and our calculations
(limited at present by numerical precision) suggest that Lifshitz points of up to 5th order
are, in principle, possible. This is the first prediction of which we are aware for higher-order
Lifshitz points. Clearly, these calculations are illustrative of a rich phase behaviour which can
be mapped by varying architecture and the three χ-parameters. Future work should address
the nature of the ordered microphase-separated phases, and allow for composition fluctuations.
In particular, particularly strong fluctuations are expected near higher-order Lifshitz points
(the upper critical dimension for a k-th–order Lifshitz point is dc = 4(1 + k)).

***

IWH acknowledges stimulating discussions with collegues in the EU-TMR programme on
“Complex Architectures in Diblock Copolymer-Based Polymer Systems”.
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