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We present some results of recent calculations of rigid rod-like particles in shear Ñow,
based on the Doi model. This is an ideal model system for exhibiting the generic behavior
of shear-thinning Ñuids (polymer solutions, wormlike micelles, surfactant solutions, liquid
crystals) in shear Ñow. We present calculations of phase coexistence under shear among
weakly-aligned (paranematic) and strongly-aligned phases, including alignment in the
shear plane and in the vorticity direction (log-rolling). Phase coexistence is possible, in
principle, under conditions of both common shear stress and common strain rate,
corresponding to di†erent orientations of the interface between phases. We discuss
arguments for resolving this degeneracy. Calculation of phase coexistence relies on the
presence of inhomogeneous terms in the dynamical equations of motion, which select the
appropriate pair of coexisting states. We cast this condition in terms of an equivalent
dynamical system, and explore some aspects of how this di†ers from equilibrium phase
coexistence.

1 Introduction
Shear Ñow induces phase transitions and dynamic instabilities in many complex Ñuids, including
wormlike micelles,1h4 liquid crystals,5h11 and lamellar surfactant systems which can ““ roll ÏÏ into
multilamellar vesicles (““onions ÏÏ).12h15 These instabilities typically manifest themselves in non-
monotonic constitutive curves such as those in Fig. 1,16h21 and in several systems, including
wormlike micelles and lamellar surfactant solutions, are accompanied by observable coexistence of
two macroscopic ““phases ÏÏ of material.

If a mean strain rate forces the system to lie on an unstable part of the Ñow curve (with negative
slope), the system can phase separate into regions (bands) with high and low strain rates and still
maintain the applied strain rate.1,7,18,22 Fig. 1 shows that phase separation can occur at either
common stress or common strain rate, depending on the geometry of the bands :23 bands stacked
along the axis of a Couette cell have the same strain rate and di†erent shear stresses, while radial
phase separation imposes a uniform shear stress and di†erent strain rates. The shear-thinning
wormlike micelle system phase separates radially into common-stress bands, while shear-
thickening systems have been observed to separate into bands with both the common stress
(worms)24,25 or common strain rate (worms and onions)26,27 geometries, although the evidence
for true steady state phase separation at common strain rate is not yet Ðrm.

Other systems with Ñow-induced ““phase transitions ÏÏ include colloidal suspensions of plate-like
particles (which shear thicken and sometimes crystallize)28 or nearly monodisperse spheres,29 as
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Fig. 1 StressÈstrain-rate curves for the Doi model (from Fig. 2) for two concentrations. The dashed lines are
unstable steady states. Straight lines indicate possible coexistence (at the same concentration) with either
common stress (horizontal lines) or strain rate (vertical line) in the two phases. Inset : geometries for common
stress (left) or common strain rate (right) coexistence.

well as a variety of surfactant-like solutions of diblock copolymers in selective solvents.30 With so
many increasingly detailed and careful experiments on so many systems, it would be nice to have
a consistent framework for non-equilibrium transitions. Unfortunately, most systems are suffi-
ciently complicated that none of the observed transitions can be completely described, even qualit-
atively, by a credible microscopic model. For example, in certain limits the class of shear-thinning
wormlike micelle systems which shear band has a mature theory for the linear rheology, which
may be extended using successful ideas from entangled polymer dynamics to predict an insta-
bility.18 Unfortunately, a complete description of phase coexistence also requires knowledge of the
shear-induced state, as well as details of the concentration dependence and, as we shall see, the
inhomogeneous contribution to the dynamical equations. We are, at present, far from having all of
these ingredients, and in many cases we do not have a clear understanding of even the structure of
the high shear rate state, much less its dynamics.

Recently, we have studied a well-known model, the Doi model for rigid rod suspensions in shear
Ñow,31 which, while admittedly the product of many approximations, provides physically well-
founded dynamics for both quiescent and shear-induced states. Although the shear rates necessary
for inducing a transition are, in practice, typically quite high unless very long rods are used, and
physical systems are often susceptible to various dynamical instabilities, this model system is quite
helpful for building intuition about how to calculate non-equilibrium ““phase diagramsÏÏ and how
their resulting topologies resemble and di†er from their equilibrium counterparts.

A vexing question for non-equilibrium calculations is how to replace the free energy mini-
mization familiar from equilibrium thermodynamics, to determine the analog of a Ðrst order phase
transition. In the context of Fig. 1, one needs to determine the selected stress for an imposed strain
rate (for phase separation at a common stress). It has emerged that an unambiguous resolution of
this problem is to include explicit non-local terms in the dynamical equations and explicitly con-
struct the coexisting state.7,10,32h34 This reduces to the equilibrium construction in the case of
zero shear, and can be shown to yield a single (barring accidental degeneracies) stress (given all
other imposed conditions) at which coexistence occurs.35

Below we summarize some results of our calculations on the Doi model for rigid rod suspen-
sions in shear Ñow;10 the details will be published elsewhere.36 This system is surprisingly rich,
given its apparent simplicity and fairly obvious coupling of internal order to Ñow. Then we discuss
some aspects of the interface construction for determining coexistence, and how it compares to its
equilibrium counterpart.

2 The Doi model
The modiÐed Doi model10,31 describes the dynamics of the rod-like particle suspension. The
orientational degrees of freedom are parametrized by the conventional liquid crystalline order
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parameter tensor

Qab(r) \ Sla lb [ 13dabT (1)

where S Æ T denotes an average around the point r of the second moment of the rod orientations m.
For rigid rods the phase diagram, and in fact the dynamics, can be more conveniently represented
by the excluded volume parameter u, deÐned by

u \ /L a (2)

where / is the rod volume fraction, L is the rod aspect ratio and a is an O(1) prefactor.31 Begin-
ning from the Smoluchowski equation for a solution of rigid rods, and including a MaierÈSauper-
like orientational interaction parameter, Doi was able to derive approximate coupled equations of
motion for the dynamics of Q and the Ñuid velocity including the liquid crystalline contribu-¿(r),
tion to the Ñuid stress tensor.

The essential physics is that Ñow tends to align the rodlike molecules, typically roughly parallel
to the Ñow direction, and hence stabilizes a nematic, or aligned, state. To study other complex
Ñuids we would have a structural variable analogous to Q ; e.g., in the wormlike micelle system we
might need, in addition to the orientation tensor, the dynamics of the mean micellar size. We have
augmented the Doi model by allowing for concentration di†usion driven by chemical potential
gradients, included the dynamical response to inhomogeneities in liquid crystalline order and
concentration, and included the translational entropy of mixing, which gives the system a biphasic
coexistence regime in the absence of Ñow. For a given stress or strain rate we determine phase
coexistence by explicitly constructing a stable coexisting steady state, which requires inhomoge-
neous terms in the equations of motion (arising here from free energy terms which penalize inho-
mogeneities in Q and /). This procedure and the model have been documented elsewhere,7,10 and
the interface construction will be discussed in more detail in Section 3.

To calculate the phase diagram we solve for the steady state homogeneous solutions to the
coupled dynamical equations for M/, Q, VN. This yields a set of solutions which are then candi-
dates for phase coexistence. Coexistence is possible with either common stress or common strain
rate in the coexisting phases, depending on geometry, and must be examined for all pairs of stable
homogeneous states. We expect coexisting states to have di†erent values for /, Q, and either the
stress or strain rate. As mentioned above, we determine coexistence by Ðnding the locus of control
parameters for which a stable interfacial solution between two homogeneous states exists. We
parametrize the shear stress and strain rate as

cz \
c5 L2

6Dro l1l22
(3)

p9 xy\
p
xy

l2 L3
3kBT

(4)

where is the rotational di†usion coefficient, and and are O(1) geometric constants.Dro l1 l2The Doi model has three stable steady states in shear Ñow:37 A weakly-ordered paranematic
state I, which the major axis of the order parameter in the shear plane ; a Ñow-aligning state N,
with a larger order parameter and major axis in the shear plane ; and a log-rolling state L, with
major axis in the vorticity direction. Fig. 2 shows homogeneous constitutive relations for the I and
N states. The N and L states are successively less viscous than the I phase at the same concentra-
tion, with a viscosity which decreases slightly with increasing concentration (reÑecting the greater
order and hence lower viscosity of more concentrated phases), in contrast to the less-ordered I
phases, whose viscosity increases with concentration, as is usual for colloidal suspensions.

2.1 Common stress phase separation

We Ðrst discuss the phase diagrams for common stress coexistence, in which the phase separation is
radial in a cylindrical Couette Ñow. For common stress coexistence of two phases I and II, the
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Fig. 2 Homogeneous stress vs. strain rate curves for various excluded volumes u (u is proportional to /)pü
xy

cz
and L \ 5. Shown are the I and N branches. The L branch is only stabilized for the high concentration
(u \ 2.7).

fraction f in phase I is determined by the lever rule,

/6 \ f/I] (1 [ f)/II (5a)

Pc \ fc5 I ] (1 [ f)c5 II (5b)

where and are mean values. Fig. 3 shows the phase diagram calculated for IÈN coexistence for/6 Pc
L \ 5. The tie lines denoting pairs of coexisting phases are horizontal in the plane, and havep

xy
Èu

positive slopes in the plane because the more concentrated nematic phase Ñows faster at acz Èu
given stress. For weak stresses the equilibrium system is slightly perturbed and the tie lines are
almost horizontal, while at high stresses the tie lines become steeper as the composition di†erence
between the phases decreases and vanishes at a critical point.

Mean constitutive relations. From the information in Fig. 3b we can calculate the mean constitu-
tive relation that would be measured in an experiment on a system with a given prescribed mean
concentration. Upon applying stress at a given concentration, the system traces a vertical path
through Fig. 3 until the two-phase region is reached, during which varies smoothly. At thispü

xy
(Pc )

stress a tiny band of N phase develops with composition and strain rate determined by the lever
rule ; and is non-analytic (Fig. 4), exhibiting a change in slope. As the stress and, hence, thepü

xy
(Pc )

Fig. 3 Phase diagram in the (a) and (b) planes, along with limits of stability of I and N phases. Tiepü
xy

Èu cz Èu
lines [horizontal in (a), sloped in (b)] connect coexisting phases.
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Fig. 4 Stress vs. mean strain rate for common stress coexistence. Solid lines are constitutive curves forp
xy

Pc
the I and N branches ; dotted lines and denote the N branch with which each I branch coexists at the lowL
strain rate coexistence boundary. Denotes banded stresses, whose plateaus do not satisfy an equal area…
construction with the homogeneous constitutive curve.

mean strain rate, increase further the system visits successive tie lines in the c5 Èu plane, each with a
higher stress and mean strain rate and di†erent coexisting concentrations. For close to the/6
equilibrium IÈN transition (Fig. 4c) the tie lines in the plane are fairly Ñat and the stresscz Èu p

xychanges signiÐcantly through the two-phase region. More dilute systems (Fig. 4a and b) have
steeper tie lines and straighter and Ñatter “plateaus Ï in pü

xy
(Pc ).

Controlled strain rate experiments should follow the homogeneous Ñow curves, except for the
coexistence regime. In this case, analogy with equilibrium systems suggests that the system should
eventually nucleate into a phase-separated banded state, with a corresponding stress change.
Experiments on wormlike micelles display this kind of behavior upon increasing the strain rate
above that of the phase boundary. If the mean strain rate is on an unstable part of the Ñow curve,
we expect a “spinodal Ï (or mechanical) instability. There is a small region (inside the loop in Fig.
3a) where the system is unstable when brought, at controlled strain rate, into this region from
either the I or N states. This corresponds to constitutive curves with the shape of curve b in Fig. 2.

For controlled stress experiments, for stresses larger than the minimum coexistence stress and
less than the local maximum we expect the system to follow the homogeneous Ñow curve until a
nucleation event occurs (Fig. 4b). Then, the strain rate should increase to either that of proper
banded or single N phase strain rate, depending on the magnitude of the stress. For stresses larger
than the I limit of stability we expect, again by analogy with equilibrium, a spinodal-type insta-
bility. This simple picture is not quite corroborated in wormlike micelles : Grand et al. reported
that a stress within a narrow range above the coexistence stress could be applied, and the system
remained on the ““metastable ÏÏ branch indeÐnitely.38

Analogy with equilibrium systems suggests similar behavior upon reducing the stress or strain
rate from the high-shear branch. Careful experiments are needed to test the idea. For example, it is
interesting to examine whether upon reducing the strain rate below the upper strain rate for the
onset of shear banding and above the limit of stability of the high strain rate branch, the stress
would spontaneously increase into the banded state.

Log-rolling phase. Fig. 5 shows the phase diagram for paranematic-log rolling IÈL coexistence.
For non-zero stress the biphasic region shifts to higher concentrations, since the stability limit of
the L phase shifts to higher concentrations. Since the I and L phases have major axes of alignment
in orthogonal directions, there is not a critical point ; rather, the biphasic region ends when the I
phase becomes unstable to the N phase. We have also computed NÈL phase coexistence, but
cannot resolve this (very concentrated, u ^ 3) regime accurately and do not present these results
here.

Can one observe IÈL coexistence? This can only occur for concentrations above that necessary
for equilibrium phase separation. One could conceivably prepare an equilibrium IÈN mixture with
the nematic phase in the log-rolling geometry. Upon applying shear, the system would then main-
tain coexistence and move through the IÈL two-phase region. However, the I phase is, itself, within
the two-phase region for IÈN phase separation, so we expect the prepared coexisting IÈL state to
be metastable under shear.
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Fig. 5 Composite phase diagrams for IÈL and IÈN coexistence at common stress. This represents two over-
layed phase diagrams, and not a single phase diagram.

2.2 Common strain rate phase separation

Common strain rate phase separation can be calculated exactly analogously common stress phase
separation. The resulting phase diagram for IÈN coexistence, for L \ 5, is shown in Fig. 6. The
shear stress and composition are partitioned according to the lower rule in Fig. 6b, with

p6
xy

\ fp
xyI ] (1 [ f)p

xyII (6)

In this case tie lines connecting coexisting phases are parallel in the c5 Èu plane, and have a negative
slope in the plane because the I phase coexists with a denser and less viscous N phase. Therepü

xy
Èu

is an interesting crossover in the plane. For dilute systems the stress in the N phase imme-pü
xy

Èu
diately outside the biphasic regime is less than the stress just before the system enters the biphasic
region (Fig. 6b). Since the stress of the N branch is less than that of the I branch at the same strain
rate and composition, we expect a decrease in the stress across the biphasic regime if composition
e†ects are weak, e.g. near a critical point. For higher mean compositions the stress increases across
the biphasic regime, because the width of the biphasic regime overcomes the shear thinning e†ect.

Fig. 6 Common strain rate phase diagram in the (a) and (b) planes. The solid and dashed linescz Èu pü
xy

Èu
denote the phase boundaries for, respectively, the I and N phases.

188 Faraday Discuss., 1999, 112, 183È194



Mean constitutive relations. The mean constitutive relations that could be measured in an
experiment may be calculated from Fig. 6a, and are shown in Fig. 7. At higher concentrations the
plateau has a positive slope while, coinciding with the crossover noted above, for lower concentra-
tions the plateau has a negative slope. A negative slope usually signiÐes a bulk instability, but here
each band lies on a stable branch of its particular constitutive curve and the Ñow should be stable.
Stable “negative-slope Ï behavior has been seen in shear-thickening systems which phase separate
at common stress,24,25 although in that case the mean constitutive curve was di†erent, consisting
of a backwards S curve and non-monotonic behavior only with multiple stresses for a given strain
rate.

Based on analogies with equilibrium, we naively expect controlled strain rate and controlled
stress experiments on concentrations such as those in Fig. 7a and b to yield behavior similar to
that for common stress phase separation, with nucleated or spinodal behavior depending on the
applied strain rate, and the same caveat applying to decreasing the strain rate from above. The
situation for compositions with curves such as Fig. 7a is qualitatively di†erent. Here there is a
range of stresses with three stable states : homogeneous I and N branches, and a banded interme-
diate branch. For controlled stress experiments, one possibility is that the I and N branches are
favored in their respective domains of stresses. For example, in start-up experiments the system
would remain on the I branch until a certain stress, at which point it would nucleate after some
time. If the system nucleated onto the coexistence branch, increasing the stress further would
return the system to the I branch. Since it nucleated from the I branch, it is more likely to jump
directly to the N branch. Similar behavior is to be expected upon reducing the stress from the N
phase. Another possibility is intrinsic hysteresis : that is, the system never jumps until reaching its
limit of stability (from either the I or N side). The present theory cannot address this question. For
controlled strain rate experiments, it could, in principle, be possible to maintain a stress on the
two-state region, although in practice this would also seem to be quite difficult, and would seem to
be mechanically unstable. In the case where stable composite curves with negative slopes were
accessed, stress was the control variable.39

2.3 Common stress or common strain rate?

What about the relative stability of phase separation at common stress or strain rate? While our
one-dimensional calculations cannot address this question, we have examined the two phase dia-
grams in the and c5 Èu planes, where k is the chemical potential.10 This can be seen in Fig. 8ap

xy
Èk

and b where, for example, the I boundary for common strain rate phase separation lies in the(Ic)
N region for common stress phase separation, in the plane. This occurs because the stress ofkÈp

xythe I phase, at common strain rate, is larger than the stress of the N phase, due to the shear
thinning nature of the transition. Conversely, the I phase at common stress lies within the I region
of the common strain rate phase diagram. Analogy with equilibrium phase transitions suggests
that, since the I phase of common strain rate phase separation thus lies on the ““wrongÏÏ side of the
phase boundary for common stress, given by the line in the plane, it would be unstable (orkÈp

xymetastable) to phase separation at common stress. Conversely, the I phase at common stress is on
the ““correct ÏÏ side of the coexistence line in the kÈc5 plane, and, again based on analogy with

Fig. 7 StressÈstrain-rate curves for common strain rate coexistence. Same notation as Fig. 4.p6
xy

(cz )
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equilibrium, might be expected to be stable. Note that if the transition were shear thickening the
situation would be reversed, and the arguments above would lead to common stress phase separa-
tion being unstable (or metastable) with respect to common strain rate phase separation.

Boundary conditions may also play a role. In a Couette device the slight inhomogeneity of
Couette Ñow induces an asymmetry between the inner and outer cylinders, exactly the symmetry
of common stress phase separation (Fig. 1). This should enhance the stability of common stress
phase separation. Cone-and-plate rheometry induces a similar preference for the common stress
geometry.

An alternative possibility is presented in Fig. 8, assuming that, in steady state, among the pos-
sible phases which are compatible with the interface solvability condition, the chemical potential
reaches its minima so that no more di†usive material Ñux is possible. Based on such a criterion,
upon increasing the strain rate for a given mean concentration the stable phase is that with the
lowest chemical potential. The thick horizontal arrows in Fig. 8 denote the and k(c5 ) pathsk(p

xy
)

for the homogeneous high and low shear rate states, in the two phase diagrams. The I branch
becomes unstable at A to phase separation at common stress, when the homogeneous path Ðrst
crosses the phase boundary in the kÈp plane. For higher stresses the system follows the segment
AB in Fig. 8b, along the phase coexistence line at common stress, and follows the stress plateau
AB in Fig. 8c. In the kÈc5 plane the system phase separates, and the chemical potential as a
function of mean strain rate follows the diagonal path AB in Fig. 8a (the dotted lines denote the
strain rates of the coexisting phases).

Upon increasing the strain rate further than point B, the chemical potential of the system can
decrease by phase separating at a common strain rate. This reduces the chemical potential, at a
given strain rate, from that of the segment BD to that of segment BC. Hence the system would
take the path BC along the phase boundary in the kÈc5 plane, as far as point C, upon which the
phase boundary crosses the homogeneous curve for the high strain rate phase of the given mean
concentration. The path would be the diagonal path BC in the plane, and would correspondkÈp

xyto the negative-sloped segment BC in the Ñow curve, Fig. 8c. Finally the system follows the high
strain rate branch, through CD.

Upon increasing the controlled stress, the system would be expected to follow ABD. Upon
decreasing the stress or the strain rate, DC-bottom jumping is expected. These scenarios follow
from minimizing the chemical potential subject to the solvability constraint should phases coexist.

Fig. 8 Phase diagrams in the (a) kÈc5 and (b) planes for IÈN coexistence (the N state is stable for higherkÈp
xystrain rate or stress, respectively). The thin vertical solid lines denote phase coexistence at common strain rate

and stress in (a) and (b), respectively. The broken lines marked and denote the coexisting states atIc Nccommon strain rate, in the plane (b) ; while the broken lines and denote the coexisting states atkÈp
xy

Ip Np ,
common stress, in the kÈc5 plane. (c) Is the mean stress vs. strain rate curve. ABD denotes a path in the phase
diagrams for common stress phase separation, while ABCD is a path which switches from common stress
phase separation to common strain rate phase separation B.
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Its correctness, of course, should be further examined by the full time evolution of the original
dynamic equations.

Experimental studies. Mather et al.8 studied a liquid crystalline polymer melt (an aromatic
polyester) and determined the lower limit of the IÈN phase boundary in the c5 ÈT plane. The studies
most relevant to the Doi model for rigid rod suspensions have been on wormlike micellar solu-
tions near the isotropicÈnematic coexistence region,1,40 where common-stress banding was
observed with a plateau stress that became steeper for concentrations closer to the equilibrium
IÈN phase boundary, in qualitative agreement with our results. Common strain rate banding has
not been seen in these systems. Micelles are considerably more complicated than simple rigid rods,
because they are not strictly rigid and their length (and hence coupling to Ñow) is a strong
dynamic function of concentration. Experiments on micelles far from an apparent nematic tran-
sition exhibit common stress shear banding with nearly Ñat coexistence plateaus,1,20,22,38,41 con-
sistent with a concentration-independent19 instability (or transition). In kinetics studies the delay
time before the transition to a banded (or high strain rate) Ñow in controlled stress start-up
“quenches Ï diverged for a window of stresses slightly above the banding stress, whereas controlled
strain rate “quenches Ï always decayed, eventually, onto a banded Ñow state. These interesting
behaviors cannot be explained by the topologies of the phase diagrams in Fig. 3. Bonn et al.27
recently studied lamellar surfactant systems and observed slowly coarsening bands in the common
strain rate geometry ; and for controlled strain rate measurements they found transient constitu-
tive curves analogous to Fig. 7a or b, consistent with common strain rate phase separation. The
true study state behavior was not measured.

3 Interface construction
Several microscopic and phenomenological models, as well as the apparent underlying Ñow curves
for wormlike micelles, show an apparent degeneracy in the shear stress at which coexistence
occurs (in the case of coexistence at a common stress). To resolve this degeneracy we have relied
on the presence of inhomogeneous terms in the dynamical equations of motion, and determined
the selected stress as that stress which allows a stable interfacial solution. In this section we
explore this in more detail using a toy constitutive model. Similar arguments were given by
Spenley et al.33 in a di†erent language, and in a recent more rigorous study.35

We consider planar Ñow with a velocity Ðeld with c5 (y) 4 dv/dy, and postulate the¿(r) \ v(y)xü ,
following constitutive relation for the shear stress :

p(c5 ) \ ph(c5 ) [ D(c5 )d
y
2 c5 (7)

The homogeneous Ñow curve is non-monotonic, as in Fig. 9, and can be derived for a systemph(c5 )with an underlying transition, such as the modiÐed Doi model above, or from phenomenological
models, such as the widely-used JohnsonÈSegalman (JS) model.42 Gradient terms may come from
the di†usion of the stress elements.43 The Ñow curve shown in Fig. 9 is for the JS model. In the

Fig. 9 Non-monotonic homogeneous Ñow curve for the JohnsonÈSegalmann model. The thick curveph(c5 )denotes a banded Ñow between strain rates and at stressc5 A c5 B p0 .
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(some what artiÐcial) model where only the shear stress di†usion is considered, the steady Ñow
condition for the JS model has the form of eqn. (7), with D(c5 ) P 1/(1 ] c5 2).

The steady state condition for planar Ñow is a uniform shear stress,

p0\ ph(c5 ) [ D(c5 )d
y
2 c5 (8)

with a constant. In an inÐnite system, an interfacial shear banding solution at a given stressp0 p0satisÐes eqn. (8), with boundary conditions

c5 ([O) \ c5 A (9a)

c5 (O) \ c5 B (9b)

d
y
c5 (^O) \ 0 (10)

Hence, given the second-order di†erential equation, the system is overdetermined. A solution is
only possible when these two conditions coincide, which may be obtained by varying the stress

It is straightforward to integrate eqn. (8) to show that a solution is possible when satisÐesp0 . p0the following condition35

P
crA

crA p0 [ ph(c5 )
D(c5 )

\ 0 (11)

Note that this is not an equal areas construction, unless D(c5 ) is a constant D.
Further insight may be obtained by casting the interface solution in terms of a dynamical

system. DeÐning

p \ c5 (12a)

q \ d
y
p 4 p@ (12b)

Eqn. (8) becomes the following dynamical system, with y playing the role of time.

p@\ q (13a)

q@\
p0 [ ph(p)

D(p)
(13b)

For within the non-monotonic region of the Ñow curve the system has three Ðxed pointsp0 on the axis q \ 0, corresponding to the strain rates of the three homogeneousp
*

\ MpA , pB , pCNÑows. Linear stability analysis yields the stable and unstable manifolds of point A and B, with
eigenvalues

j
B

\ ^
SC 1

D(p)

dph
dp
D K

p/pR

(14)

and eigenvectors at angles h \ arctan j with respect to the p-axis. Point C has imaginary eigen-
values and is a cycle, while A and B are saddles with stable and unstable directions.

An interfacial solution corresponds to an orbit connecting saddles A and B, and is denoted a
saddle connection ; it is also called a heteroclinic orbit, since it connects two di†erent Ðxed points.
This set of ordinary di†erential equations (ODE) does not generally have a saddle connection for
an arbitrary in the multi-valued region. It can be shown35 for models (with arbitrary numbersp0of dynamical variables) in planar shear Ñow with di†erential non-local terms that, apart from
accidents, a saddle connection only exists at isolated points in the control parameter space. Here,
the control parameters are and parameters which change the shape of while for thep0 ph ,33,35
Doi model above, the control parameters are (for a given set of molecular parameters such as L )
k and for common stress phase separation, and k and c5 for common strain rate phasep

xyseparation.
Fig. 10 shows the evolution of ““orbits ÏÏ in the pÈq phase space as the stress is tuned. For p \ p0a heteroclinic orbit exists, connecting A and B. This corresponds to an elementary shear band

solution, in which one portion of the sample lies on the high strain rate branch B, another portion
lies on the low strain rate branch A, and a single interface separates the two phases. For p D p0
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Fig. 10 Orbits in the phase space for the dynamical system of eqn. (13). (Left) Away from the coexistence
stress, a saddle connection does not exist and A is connected to itself by a homoclinic orbit. [A similarp [ p0 ,
situation exists for with the homoclinic orbit returning to B instead of A.] (Right) At the coexistencep \ p0 ,
stress a heteroclinic orbit connecting A and B (saddle connection) exists. The Ðxed points are at q \ 0,p \ p0and the solid lines show orbits beginning and ending on the stable Ðxed points A and B.

there is no heteroclinic orbit or saddle connection, and hence no stationary interface. Fig. 10 (left)
shows a stress slightly greater than with a homoclinic orbit connecting state A to itself.p0 ,
Kramer32 pointed out in the context of reaction di†usion equations that such a homoclinic orbit
corresponds to the critical droplet in a metastable phase of A material. Note that, although in real
space it extends from A at y \ [O to A at y \ ]O, the dominant spatial variation is in fact
localized, with a size that vanishes when the stress reaches the maximum of the Ñow curve in Fig.
9 (at which the Ðxed points A and C annihilate). Slightly larger droplets are unstable and, when
the full dynamics are returned to the problem, presumably Ñow to the high strain rate branch B,
while smaller droplets are expected to decay back to A. By analogy with equilibrium behavior, for

we expect phase B to be the long time steady state, if Ñuctuations (i.e. noise, thermal orp [p0otherwise) were included.

4 Conclusion
We have outlined the phenomenology of phase separation of rigid rod suspensions in shear Ñow,
using the modiÐed Doi model. Phase separation may occur with common stress or strain rate,
corresponding to the di†erent coexistence geometry. We have calculated coexistence among three
phases (paranematic, Ñow-aligning nematic, and log-rolling), while only two equilibrium phases
exist. That is, the full rotational symmetry of an equilibrium nematic is broken by the biaxial shear
Ñow, leaving two possible stable nematic orientations (the in-plane I and N states, and the out of
plane L state). The shear thinning nature of the transition suggests that common stress phase
separation is stable ; while appealing to a minimization of the chemical potential, subjected to the
interface solvability, predicts a curious crossover from common stress to common strain rate
phase separation. We do not know which of these, or other, possibilities, are the physical ones.
The composite stress strain curves depend on the coupling to composition,23 and can exhibit an
apparent unstable constitutive relation, which would be mechanically unstable under controlled
strain rate conditions. Although there have been few experiments on true lyotropic rigid rod
systems in Ñow, wormlike micelles can have a Ñow-induced nematic phase at higher concentra-
tions, and our results appear to qualitatively describe many aspects of these experiments. See, for
example, the phase diagrams in ref. 44.

We have also shown schematically how our construction for coexistence can be cast as an
equivalent dynamical system, for which coexistence corresponds to a heteroclinic saddle connec-
tion. In the most general case, stress selection depends on the nature of the gradient terms in the
dynamics,35 while in equilibrium systems the gradient terms can be exactly integrated to yield a
condition independent of the gradient terms. The dynamical systems picture also yields an
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analogy with a critical droplet, which may prove promising in understanding the non-equilibrium
analogs of nucleation and growth.
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