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an average density mode, where the monolayer densi-
ties move in phase, and a density difference mode, where
the monolayer densities move out of phase. The aver-
age density mode is not considered within the dissipative
dynamic framework and is considered a purely propagat-
ing mode, which leaves combined dispersion relations for
the remaining dynamic modes, where the dominant re-
laxation mode depends on the length scale of the bilayer
movement. This model shows quantitative agreement with
experimental work [14–17] and has subsequently become
the most widely used framework for studies of BLM dy-
namics. Hömberg and Müller [18] generalised the Seifert
and Langer theory to include the bilayer’s inertia and
surface tension although the inclusion of inertial effects
does not improve the agreement with experimental results
since most nanoscale BLM undulations occur at vanish-
ing Reynolds number. Coarse-grained simulation models
of membranes allow for the direct calculation of fluctu-
ation spectra, where the Seifert and Langer framework
has again been used to effectively describe the fluctuations
observed [19,20].

Recent computational [21,22] and experimental [23–25]
work has highlighted the role fluctuations in the mem-
brane thickness can play in the dynamics. Thickness fluc-
tuations are not explicitly considered in the Seifert and
Langer model, as the BLM is physically represented as a
thin sheet. Fluctuations in the lipid density in each leaflet
are analogous to thickness fluctuations, but neglect the
movement of fluid due to thickness changes, which will af-
fect the dynamics. Advances in computer simulation have
also led to debate around the Seifert and Langer model
of BLM tension, suggesting that BLM tension can arise
from several sources and can even vary between monolayer
leaflets in apparently “tensionless” BLMs [26]. While this
has led to new BLM models based on renormalized elastic
theory [27] or a viscoelastic tensor-based approach [28],
these are not conclusive and the issue is still unresolved.

Here we present a new model of membrane dynamics
that includes a physical description of a “thick” membrane
comprising two monolayers, with the freedom to vary pa-
rameters between the monolayers. The thickness is ex-
plicitly included by evaluating the boundary conditions
at the membrane surface, rather than on the membrane
midplane, as previously considered. We describe the dy-
namics in terms of intuitive modes of motion of the bilayer,
including a form of bilayer relaxation not noted in previ-
ous models. For a symmetric bilayer, the model generates
dispersion relations that can be studied analytically and
are associated with the modes of bilayer motion.

Method. –

Geometry. We model an asymmetric BLM by vary-
ing the monolayer thickness, membrane viscosity and
area compressibility between the monolayer leaflets, which
couples the modes of bilayer motion, complicating the
dissipative relaxation of an asymmetric BLM. We con-
sider a planar BLM suspended in viscous fluid, with the

Fig. 1: (Colour on-line) A 2D projection of the schematic
geometry of our bilayer model.

unperturbed bilayer normal parallel to the z-axis and in-
termonolayer surface spanning the x-y plane at z = 0,
as shown in fig. 1. The upper (+) and lower (−) bilayer
surfaces are described by the height functions h+ (r) and
h− (r):

h+ (r) = d+ (r) + s (r), (1a)
h− (r) = −d− (r) + s (r) , (1b)

where d± (r) is the thickness (strictly positive) of a mono-
layer and s (r) is the height of the intermonolayer surface.
We define r ≡ (x, y). This explicit description of a “thick”
bilayer is a distinctive feature of our model and better re-
flects the physical nature of a BLM.

Free energy. The BLM description contains three de-
grees of freedom; the two monolayer thicknesses and the
height of the intermonolayer surface. By comparison, the
Seifert and Langer model considers two degrees of free-
dom, the bilayer height and out of phase variation of
the monolayer density, where the average density mode
is neglected within the non-inertial framework [12]. The
free energy of each monolayer F± is modelled after the
Helfrich-Canham Hamiltonian in the Monge representa-
tion [29] with, in principle, different elastic constants for
each monolayer:

F = F+ + F− + Fframe, (2a)

where
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dA, (2b)

Fframe = γfr [∇ (h+ + h−)]2 /2, (2c)

where κb is the membrane bending rigidity, d0± is the
unperturbed monolayer thickness and κA is the area com-
pressibility. The second term in the area compressibility
couples the curvature of the membrane and the thickness
of the monolayers [30]. The surface tension γs restricts
variations in the monolayer/water interfacial area while
we introduce an additional frame tension term to restrict
changes in the total membrane area. The contribution to
the free energy from the frame tension γfr cannot be split
between leaflets and is a property of the whole bilayer.
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