Phys 506 HW1: Working with Operators

Problem 1

1.) Compute the eigenstates of the operator ens\vec{e}_{n} \cdot \vec{s}, where
en=(sinθcosϕ,sinθsinϕ,cosθ)\vec{e}_{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) is a unit vector that points in the θ,ϕ\theta, \phi direction (we use the physicists standard where θ\theta is the angle from the vertical and ϕ\phi is the polar angle in the xyx-y plane). Write Ŝ=2σ\hat{\vec{S}}=\frac{\hbar}{2} \vec{\sigma} and solve the problem by diagonalizing the 2×22 \times 2 matrix. (remember to normalize your final answer).
Your final answer is a 2 component spinor of the form (αβ)\binom{\alpha}{\beta}. Use only cosθ2,sinθ2,eiϕ\cos \frac{\theta}{2}, \sin \frac{\theta}{2}, e^{i \phi} and numbers in your final answer. Make sure your final answer is in the form where α\alpha, the top component of the spinor, is real. (Look up some trig identities if your answer looks complicated; the half angle formulas will be helpful.)
Note that if we examine (enŜ)2=24(enσ)2=24enen=24\left(\vec{e}_{n} \cdot \hat{\vec{S}}\right)^{2}=\frac{\hbar^{2}}{4}\left(\vec{e}_{n} \cdot \vec{\sigma}\right)^{2}=\frac{\hbar^{2}}{4} \vec{e}_{n} \cdot \vec{e}_{n}=\frac{\hbar^{2}}{4} we see that the eigenvalues of enŜ\vec{e}_{n} \cdot \hat{\vec{S}} must be ±2\pm \frac{\hbar}{2} for any direction θ,ϕ\theta, \phi ! If you know about the Stern-Gerlach experiment, this explains why it gives the result it gives.

Problem 2

2.) Derive the matrices corresponding to the operators L̂x,L̂y\hat{L}_{x}, \hat{L}_{y}, and L̂z\hat{L}_{z} in the l=1l=1 angular momentum representation. They satisfy (Li)mm=l=1,m|L̂i|l=1,m=(Mi)mm\left(L_{i}\right)_{m m^{\prime}}=\hbar\langle l=1, m| \hat{L}_{i}\left|l=1, m^{\prime}\right\rangle=\hbar\left(M_{i}\right)_{m m^{\prime}} with MM a dimensionless matrix.
You should find the computation of LzL_{z} is easiest because the states |l=1,m|l=1 , m\rangle are eigenstates of L̂z\hat{L}_{z}. You may find using the raising and lowering operators and the fact that L̂±=L̂x±iL̂y\hat{L}_{ \pm}=\hat{L}_{x} \pm i \hat{L}_{y} make your calculations easier. (Use the result for L̂+|lm\hat{L}_{+} |lm\rangle etc.) (i.e, L̂+|10=2|11\hat{L}_{+}| 1 0 \rangle = \sqrt{2} \hbar|1 1 \rangle, etc.)
You should find $M_{x}=\left(\begin{array}{ccc}0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}}\end{array}\right) \quad M_{y}=\left(\begin{array}{ccc}0 & -\frac{i}{\sqrt{2}} & 0 \\ \frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\ 0 & \frac{i}{\sqrt{2}} & 0\end{array}\right)\quad \text{and }\\ M_{z}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$.
Note that because the L̂z\hat{L}_{z} eigenvalues are ,0\hbar, 0, and -\hbar, we have (Mz1)Mz(Mz+1)=0Mz(Mz21)=0 or Mz3=Mz\begin{gathered} \left(M_{z}-1\right) M_{z}\left(M_{z}+1\right)=0 \\ \Rightarrow M_{z}\left(M_{z}^{2}-1\right)=0 \\ \text { or } M_{z}^{3}=M_{z} \end{gathered} But since this is true for any direction, we have Mi3=MiM_{i}^{3}=M_{i}.
Indeed, just like we argued about spin 12\frac{1}{2} above, we should have (enM)3=(enM)\left(\vec{e}_{n} \cdot \vec{M}\right)^{3}=\left(\vec{e}_{n} \cdot \vec{M}\right) with en=(sinαcosβ,sinαsinβ,cosα)\vec{e}_{n}=\left(\sin \alpha \cos \beta , \sin \alpha \sin \beta, \cos \alpha\right). You now will show this.
First compute enM=(cosα12sinαeiβ012sinαeiβ012sinαeiβ012sinαeiβcosα),\vec{e}_{n} \cdot \vec{M}=\left(\begin{array}{ccc} \cos \alpha & \frac{1}{\sqrt{2}} \sin \alpha e^{-i \beta} & 0 \\ \frac{1}{\sqrt{2}} \sin \alpha e^{i \beta} & 0 & \frac{1}{\sqrt{2}} \sin \alpha e^{i \beta} \\ 0 & \frac{1}{\sqrt{2}} \sin \alpha e^{i \beta} & -\cos \alpha \end{array}\right), Then compute (en,M)2\left(\vec{e}_{n}, \vec{M}\right)^{2} and (enM)3\left(\vec{e}_{n} \cdot \vec{M}\right)^{3} to verify

(enM)3=(enM).\left(\vec{e}_{n} \cdot \vec{M}\right)^{3}=\left(\vec{e}_{n} \cdot \vec{M}\right).

Use this result to show that exp[ivM]=n=0(i)nn!|v|n(evM)n=1+isin|v|(eσM)+(cos|v|1)evM)2,\begin{aligned} & \exp [i \vec{v} \cdot \vec{M}]=\sum_{n=0}^{\infty} \frac{(i)^{n}}{n!}|v|^{n}\left(\vec{e}_{v} \cdot \vec{M}\right)^{n}\\ & \left.= \mathbb {1} + i \sin |v|\left(\vec{e}_{\sigma} \cdot \vec{M}\right)+(\cos |v|-1) \mid \vec{e}_{v} \cdot \vec{M}\right)^{2}, \end{aligned} with ev=v|v|=(sinαcosβ,sinαsinβ,cosα)\vec{e}_{v}=\frac{\vec{v}}{|v|} = (\sin \alpha \cos \beta , \sin \alpha \sin \beta , \cos \alpha).

This is another case where we can explicitly compute the exponential of a matrix. If you wish to try, it does not work for any higher angular momentum.

Problem 3

3.) Using what you know about exponentials of operators eÂeB̂e^{\hat{A}} e^{\hat{B}} show that, in general, we have

eivσeivσei(v+v)σe^{i \vec{v} \cdot \vec{\sigma}} e^{i \vec{v}^{\prime} \cdot \vec{\sigma}} \neq e^{i\left(\vec{v}+\vec{v}^{\prime}\right) \cdot \sigma} Under what circumstances are they equal (this will be a relation between v\vec{v} and v\vec{v}^{\prime})?
Hint: Consider BCH for Pauli matrices; do not try to multiply the matrices for eivσe^{i \vec{v} \cdot \vec{\sigma}} and eivσe^{i \vec{v}^{\prime} \cdot \vec{\sigma} }.

Problem 4

4.) Working with the l=1l=1 angular momentum matrices, compute eiθMzMieiθMze^{-i \theta M_{z}} M_{i} e^{i \theta M_z}. Use the Hadamard relation (which holds for matrices). Note that the commutators never terminate, but they do eventually repeat in a pattern. Determine what the pattern yields in terms of trig functions.

Problem 5

5.) Consider the symplectic group algebra

[K0,K±]=±K±[K+,K]=2K0\left[K_{0}, K_{ \pm}\right]= \pm K_{ \pm} \quad\left[K_{+}, K_{-}\right]=-2 K_{0} This is the same as the SU(2) algebra, but there is a minus sign on the K0K_{0} operator.
Verify that K+=(0010)K=(0100)K_{+}=\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right) \quad K_{-}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) and K0=12(1001)K_{0}=\frac{1}{2}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) satisfy the above algebra.
Compute exp(ξK++2iηK0+ξ*K)\exp \left(-\xi K_{+}+2 i \eta K_{0}+\xi^{*} K_{-}\right), where ξ\xi and η\eta are complex numbers.
Hint: First compute (ξK++2iηK0+ξ*K)2\left(-\xi K_{+}+2 i \eta K_{0}+\xi^{*} K_{-}\right)^{2} and use that result to simplify your work. Review hyperbolic functions if the power series are unfamiliar. Your final result will have the form

(K*λ*λK) (K and λ are functions of ξ and η)\left(\begin{array}{ll} K^{*} & \lambda^{*} \\ \lambda & K \end{array}\right) \quad \text { ($K$ and } \lambda \text { are functions of } \xi \text { and } \eta)

Factorize this to show the exponential disentangling identity for the symplectic group given by exp[ξK++2iηK0+ξ*K]=eλK*K+e2lnK*K0eλ*K*K.\exp \left[-\xi K_{+}+2 i \eta K_{0}+\xi^{*} K_{-}\right] =e^{-\frac{\lambda}{K^{*}} K_{+}} e^{-2 \ln K^{*} K_{0}} e^{\frac{\lambda^{*}}{K^{*}} K_{-}}.

Problem 6

6.) In lecture 2, we derived the the following simplified BCH formula eÂeB̂=eÂ+B̂+12[Â,B̂]+112[Â,[Â,B̂]]+112[B̂,[B̂,Â]],e^{\hat{A}} e^{\hat{B}}=e^{\hat{A}+\hat{B}+\frac{1}{2}[\hat{A}, \hat{B}]+\frac{1}{12}[\hat{A}, [\hat{A}, \hat{B}]]+\frac{1}{12}[\hat{B},[\hat{B}, \hat{A}]]}, which is exact if [Â,[Â,[Â,B̂]]]=0[B̂,[Â,[Â,B̂]]]=0[Â,[B̂,[B̂,Â]]]=0[B̂,[B̂,[B̂,Â]]]=0.\begin{aligned} & [\hat{A}, [\hat{A},[\hat{A}, \hat{B}]]] = 0 \\ & [\hat{B}, [\hat{A},[\hat{A}, \hat{B}]]] = 0 \\ & [\hat{A}, [\hat{B},[\hat{B}, \hat{A}]]] = 0 \\ & [\hat{B}, [\hat{B},[\hat{B}, \hat{A}]]] = 0. \end{aligned}

We want to re-express this in a different form.
Let X̂=Â\hat{X}=\hat{A} and Ŷ=B̂+12[Â,B̂]\hat{Y}=\hat{B}+\frac{1}{2}[\hat{A}, \hat{B}]
Then Â=X̂ and B̂=Ŷ12[Â,B̂]=Ŷ12[X̂,Ŷ12[Â,B̂]]=Ŷ12[X̂,Ŷ]+14[X̂,[X̂,Ŷ]]\begin{aligned} \hat{A}=\hat{X} \text { and } \hat{B} & =\hat{Y}-\frac{1}{2}[\hat{A}, \hat{B}] \\ & =\hat{Y}-\frac{1}{2}\left[\hat{X}, \hat{Y}-\frac{1}{2}[\hat{A}, \hat{B}]\right] \\ & =\hat{Y}-\frac{1}{2}[\hat{X}, \hat{Y}]+\frac{1}{4}[\hat{X},[\hat{X}, \hat{Y}]] \end{aligned} since higher-order terms vanish.
Rearrange the BCH formula to its equivalent form eX̂eŶe12[X̂,Ŷ]e13[Ŷ,[Ŷ,X̂]]e16[X̂,[X̂,Ŷ]]=eX̂+Ŷ\begin{array}{r} e^{\hat{X}} e^{\hat{Y}} e^{-\frac{1}{2}[\hat{X}, \hat{Y}]} e^{-\frac{1}{3}[\hat{Y},[\hat{Y}, \hat{X}]]} e^{\frac{1}{6}[\hat{X},[\hat{X}, \hat{Y}]]} \\ =e^{\hat{X}+\hat{Y}} \end{array} (show your work, and recall [X̂[X̂,Ŷ]][\hat{X}[\hat{X}, \hat{Y}]] and [Ŷ,[Ŷ,Ẋ]][\hat{Y},[\hat{Y}, \dot{X}]] commute with everything.)
Now consider the time evolution of a particle mowing in a linear potential with

Ĥ=p̂22m+Fx̂ (a gravitational potential) \hat{H}=\frac{\hat{p}^{2}}{2 m}+F \hat{x} \quad \text { (a gravitational potential) } The time evolution operator is eiĤt=eit[p̂22m+Fx̂]e^{-i \hat{H} t}=e^{-it[\frac{\hat{p}^{2}}{2 m}+F \hat{x}]}. Using the notation from earlier in the problem, pick X̂=itp̂22mŶ=itFx̂\hat{X}=-i t \frac{\hat{p}^{2}}{2 m} \quad \hat{Y}=-i t F \hat{x} \quad, with [x̂,p̂]=i[\hat{x}, \hat{p}]=i \hbar. Use the BCH formula you derived above to compute a factorized form of eiĤte^{-i \hat{H} t}. Your answer will have four factors in it. Be careful. The order of the factors matters.