PHYS 5002: Homework 6

Momentum space hydrogen wavefunctions

In class, we derived an identity for the hydrogen energy eigenfunction in a form reminiscent of the position wavefunction: \[\left|\psi_{nl}\right\rangle_{norm}=(-i)^{n-l-1}\left(\frac{na_0}{2}\right)^{n-1}\sqrt{\frac{(2n-1)!(n-l-1)!}{(n+l)!}}\frac{1}{\hat{r}^l}P_n^l(\hat{r}_x,\hat{r}_y,\hat{r}_z)\left(\frac{2\hat{r}}{na_0}\right)^lL_{n-l-1}^{2l+1}\left(\frac{2\hat{r}}{na_0}\right)\left|\phi_n\right\rangle\] a.) We want to look at \[\left|\psi_{21}\right\rangle=\frac{a_0}{\hat{r}}P_n^1(\hat{r}_x,\hat{r}_y,\hat{r}_z)\left(\frac{\hat{r}}{a_0}\right)L_0^3\left(\frac{\hat{r}}{a_0}\right)\left|\phi_2\right\rangle\] Recall \(L_0^3=1\) and choose \(P_n^1(\hat{r}_x,\hat{r}_y,\hat{r}_z)=\sqrt{\frac{3}{4\pi}}\hat{r}_\alpha\) which is a \(p\)-wave state. So, \[\left|\psi_{21}\right\rangle_{norm}=\sqrt{\frac{3}{4\pi}}\hat{r}_\alpha\left|\phi_2\right\rangle\] for \(\alpha=x,y,\) or \(z\).
 
Compute \(\left\langle p_x,p_y,p_z\middle|\psi_{21}\right\rangle_{norm}=\psi_{21}(p_x,p_y,p_z)\) recalling that \[\hat{p}_\alpha\left|\phi_2\right\rangle=\frac{i\hbar}{2a_0}\frac{\hat{r}_\alpha}{\hat{r}}\left|\phi_2\right\rangle\] Use this to rewrite \(\left\langle\mathbf{p}\middle|\hat{r}_x\middle|\phi_2\right\rangle=\sqrt{\frac{3}{4\pi}}\frac{2a_0}{i\hbar}\left\langle\mathbf{p}\middle|\hat{r}\hat{p}_\alpha\middle|\phi_2\right\rangle\).
 
Then, use the commutator \([\hat{p}_\alpha,\hat{r}]=-i\hbar\frac{\hat{r}_\alpha}{\hat{r}}\) to show that \[\psi_{21}(\mathbf{p})=\sqrt{\frac{3}{4\pi}}\frac{2a_0p_\alpha}{i\hbar}\left\langle\mathbf{p}\middle|\hat{r}\middle|\phi_2\right\rangle+\sqrt{\frac{3}{4\pi}}2a_0\left\langle\mathbf{p}\middle|\frac{\hat{r}_\alpha}{\hat{r}}\middle|\phi_2\right\rangle\] Now, one last trick is needed: Write \(\hat{r}=\sum_{\alpha}\frac{\hat{r}_\alpha\hat{r}_\alpha}{\hat{r}}\) and replace \(\frac{\hat{r}_\alpha}{\hat{r}}\left|\phi_2\right\rangle=\frac{i\hbar}{2a_0}\hat{p}_\alpha\left|\phi_2\right\rangle\) etc. Note further that you should calculate \(\left\langle\mathbf{p}\middle|\hat{r}\middle|\phi_2\right\rangle\) separately and substitute the result into the final answer. You will end up needing to compute \(\left\langle\mathbf{p}\middle|\phi_2\right\rangle\), which can be done similar to how we did this in Lecture 11. Finish the problem to compute \(\psi_{21}(\mathbf{p})\). You do not need to evaluate \(\left\langle 0_p\middle|\phi_2\right\rangle\).
 
b.) Now consider \(\left|\psi_{20}\right\rangle=-ia_0\sqrt{\frac{3}{4\pi}}L_1^1\left(\frac{\hat{r}}{a_0}\right)\left|\phi_2\right\rangle\) where \(L_1^1\left(\frac{\hat{r}}{a_0}\right)=2-\frac{\hat{r}}{a_0}\) so \[\psi_{20}(\mathbf{p})=-i\sqrt{\frac{3}{4\pi}}a_0\left\langle\mathbf{p}\middle|\left (2-\frac{\hat{r}}{a_0}\right )\middle|\phi_2\right\rangle.\] Calculate \(\psi_{20}(\mathbf{p})\) using the same techniques as above.

Comparing different perturbation theories

Using \(\hat{H}=\hat{H}_0+\hat{V}\) where \(V_{nm}=\left\langle n\middle|\hat{V}\middle|m\right\rangle\) we have the non-degenerate perturbation theory through fourth order is \[E_n=E_n^0+\text{ first order correction~} + \text{~second order correction~} + \text{~third order correction~} + \text{~fourth order correction}\] where \[\text{first order correction}=V_{nn}\] \[\text{second order correction}=\sum_{m\ne n}\frac{V_{mn}}{E_n^0-E_m^0}\] \[\text{third order correction}=\sum_{m\ne n}\sum_{m\ne n'}\frac{V_{nm}V_{mm'}V_{m'n}}{(E_n^0-E_m^0)(E_n^0-E_{m'}^0)}-V_{nn}\sum_{m\ne n}\frac{|V_{nm}|^2}{(E_n^0-E_m^0)^2}\] and last but not least, \[\begin{gathered} \text{fourth order correction}=\sum_{m=\ne n}\sum_{m'\ne n}\sum_{m''\ne n}\frac{V_{nm}V_{mm'}V_{m'm''}V_{m''n}}{(E_n^0-E_m^0)(E_{n}^0-E_{m'}^0)(E_{n}^0-E_{m''}^0)}-\sum_{m\ne n}\sum_{m'=n}\frac{|V_{nm}|^2|V_{nm'}|^2}{(E_n^0-E_m^0)(E_n^0-E_{m'}^0)} \\ -V_{nn}\sum_{m\ne n}\sum_{m'\ne n}\frac{V_{nm}V_{mm'}V_{m'n}}{(E_n^0-E_m^0)(E_n^0-E_{m'}^0)}\left(\frac{1}{E_n^0-E_m^0}+\frac{1}{E_n^0-E_{m'}^0}\right)+V_{nn}^2\sum_{m\ne n}\frac{|V_{nm}|^2}{(E_n^0-E_m^0)^3} \end{gathered}\] Now, take \(\hat{H_0}=\frac{\hat{p}^2}{2m}+\frac{1}{2}k\hat{x}^2\) and \(\hat{V}=\frac{1}{2}\Delta k\hat{x}^2\)
 
a.) Compute \(E_n\) exactly, and Taylor expand in a series in \(\Delta k\) through fourth order in \(\Delta k\).
 
b.) Compute \(E_n\) through fourth order in \(\hat{V}\) using the above formula for Rayleigh-Schrödinger perturbation theory.
 
c.) Compute \(E_n\) to second in Wigner-Brillouin perturbation theory for the ground state only.
 
d.) Plot \(E(\text{second order RS}), E(\text{fourth order RS}), E(\text{second order WB}),\) and the Taylor series through fourth order for \(0\le\frac{\Delta k}{k}\le3\) (for the ground state only). Comment on the quality of the different approximations.

Isotropic harmonic oscillator

Consider the isotropic simple harmonic oscillator: \[\hat{H}=\frac{\hat{p}_x^2+\hat{p}_y^2+\hat{p}_z^2}{2m}+\frac{1}{2}k(\hat{x}^2+\hat{y}^2+\hat{z}^2)\] a.) Using the factorization method in Cartesian coordinates, find the energy eigenvalues.
 
b.) Rewrite \[\hat{H}=\frac{\hat{p}_r^2}{2m}+\frac{\hat{L}^2}{2m\hat{r}^2}+\frac{1}{2}k\hat{r}^2\] and find the eigenvalues using the factorization method in spherical coordinates. Recall \[\hat{H}_l=\frac{\hat{p}_r^2}{2m}+\frac{\hbar^2l(l+1)}{2m\hat{r}^2}+\frac{1}{2}k\hat{r}^2\] Verify they are the same as those found in (a).
 
HINT: Use \[\hat{B}_r^\dagger(l)=\frac{1}{\sqrt{2m}}\left(\hat{p}_r+\left[m\omega\alpha\hat{r}+\frac{\hbar\beta}{\hat{r}}\right]\right)\] with both \(\alpha\) and \(\beta\) both nonzero.
 
c.) Plot the energy levels for discrete values of \(l\).

Perturbed spherical harmonic oscillator

a.) Find the ground state wavefunction (use either Cartesian or spherical coordinates).
 
b.) Add a perturbation \(\hat{V}=\frac{1}{2}\Delta k\hat{x}^2\). The ground state is non-degenerate. Compute \(E_{gs}\) through second order in Rayleigh-Schrödinger perturbation theory.
 
c.) Compute the energy in the Cartesian basis and compare to the perturbative energy.