Phys 506 lecture 15: Wigner-Brillouin perturbation theory

Formalism for the series for the perturbed states

Recall from our previous work that we wish to solve the general energy eigenvalue problem with \(\hat{H} |n\rangle = E_n |n\rangle\), with the Hamiltonian able to be proken into an unperturbed and perturbed part via \(\hat{H} = \hat{H}_0 + \hat{V}\), and the unperturbed energy eigenvalue problem is given by \(\hat{H}_0 |n\rangle_0 = E_n^0 |n\rangle_0\). This implies that \(\hat{H} |n\rangle = E_n |n\rangle\) can be written as \[(E_n -\hat{H}_0) |n\rangle = \hat{V}|n\rangle.\] Therefore, let’s define, as before the two following projection operators (onto and perpendicular to the unperturbed ground state): \[\hat{P}_n |n\rangle_0 \, {}_0\langle n| ~~\text{and}~~ \hat{Q}_n = 1- \hat{P}_n.\] Now recall that we previously found that \[\hat{Q}_n \lvert n \rangle = \frac{\hat{Q}_n}{E_n - \hat{H}_0} \hat{V} \lvert n \rangle.\] However, beware that there is a caveat to this—namely that \(\hat{Q}_n\) projects \(\frac{1}{E_n - \hat{H}_0}\) perpendicular to the unperturbed ground state only when \(\hat{V} = 0\), because the denominator has an \(E_n\) in it instead of an \(E_N^{(0)}\). Now note that: \[\lvert n \rangle = (\hat{P}_n + \hat{Q}_n) \lvert n \rangle = \hat{P}_n \lvert n \rangle + \frac{\hat{Q}_n }{E_n - \hat{H}_0} \hat{V}\lvert n \rangle.\] So we write: \[\bigg(1 - \frac{\hat{Q}_n}{E_n - \hat{H}_0} \hat{V}\bigg) \lvert n \rangle = \hat{P}_n \lvert n \rangle = \lvert n \rangle_0 \, _0\langle n | n \rangle = |n \rangle_0,\] using the same normalization as we did before. Then we have that \[\lvert n \rangle = \left[1 - \frac{\hat{Q}_n \hat{V}}{E_n - \hat{H}_0}\right]^{-1} \lvert n \rangle_0= \lvert n \rangle_0 + \frac{\hat{Q}_n \hat{V} }{E_n - \hat{H}_0} \lvert n \rangle_0 + \frac{\hat{Q}_n \hat{V} \hat{Q}_n \hat{V} }{(E_n - \hat{H}_0)^2} \lvert n \rangle_0+ \cdots\]

Formalism to find the perturbed energy

To find \(E_n\), multiply \((E_n - \hat{H}_0) \lvert n \rangle = \hat{V} \lvert n \rangle\) by \(_0\langle n |\) from the left to find that \[E_n - E_n^{(0)} = {}_0\langle n \lvert \hat{V} \lvert n \rangle.\] So we find that \[\begin{aligned} E_n &= E_n^{(0)} + {}_0\langle n \lvert \hat{V} \lvert n \rangle _0 + {}_0\langle n \lvert \hat{V} \frac{\hat{Q}_n}{E_n - \hat{H}_0} \hat{V} \lvert n \rangle_0 + \cdots \\ &= E_n^{(0)} + V_{nn} + \sum_{m \neq n} \frac{V_{nm} V_{mn}}{E_n - E_m^{(0)}} + \cdots \end{aligned}\] Note that \(E_n\) appears on both the RHS and LHS. This generates a new equation for \(E_n\). But the series is much simpler than for the non-degenerate case, and we did not need to assume that the system was non-degenerate. On the downside, it is often less accurate than Rayleigh-Schrödinger perturbation theory. The full series for \(\lvert n \rangle\) becomes: \[\lvert n \rangle = \sum_{m=0}^\infty \left( \frac{\hat{Q}_n \hat{V}}{E_n - \hat{H}_0} \right)^m \lvert n\rangle_0.\] For \(E_n\), we have: \[\begin{aligned} E_n = &E_n^{(0)} + V_{nn} + \sum_{m \neq n} \frac{V_{nm} V_{mn}}{E_n - E_m^{(0)}} + \sum_{m \neq n} \sum_{m' \neq n} \frac{V_{nm} V_{mm'} V_{m'n}}{(E_n - E_m^{(0)})(E_n - E_{m'}^{(0)})} + \cdots \\ &+ \sum_{m_1 \neq n} \sum_{m_2 \neq n} \cdots \sum_{m_\ell \neq n} \frac{V_{nm_1} V_{m_1m_2} V_{m_2m_3} \cdots V_{m_{\ell-1}m_\ell} V_{m_\ell n}} {(E_n - E_{m_1}^{(0)})(E_n - E_{m_2}^{(0)}) \cdots (E_n - E_{m_\ell}^{(0)})}. \end{aligned}\] This leads to a high-order polynomial equation for \(E_n\). Usually, only one root is the physical root in this polynomial equation.

Example: Shifting the simple harmonic oscillator

Let’s consider an example to see this process in action. Consider the following one-dimensional Hamiltonian: \[\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{1}{2} k \hat{x}^2\] where \(\hat{V} = c \hat{x}\). This corresponds to a linear shift of the harmonic-oscillator Hamiltonian. The full Hamiltonian is then: \[\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2} k \hat{x}^2 + c \hat{x} = \frac{\hat{p}^2}{2m} + \frac{1}{2} k \left(\hat{x} + \frac{c}{k}\right)^2 - \frac{c^2}{2k}.\] Now, define \(\hat{x}' = \hat{x} + \frac{c}{k}\) to find that \[[\hat{x}', \hat{p}] = i\hbar\] and \[\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2} k \hat{x}'^2 - \frac{c^2}{2k}\] and we get that \[E_n = \hbar \omega \left(n + \frac{1}{2}\right) - \frac{c^2}{2k}.\] This means the energy is shifted to second order only!

Now, we calculate energies with perturbation theory. First we determine all of the quantities we will need. We rewrite \(\hat{V}\) as \(\hat{V}=c \hat{x} = c \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a} + \hat{a}^\dagger\right)\). Then, we find that \(V_{nn}=\langle n \lvert c \hat{x} \lvert n \rangle = 0\), \(V_{mn}=0\) unless \(m=n\pm 1\). Then, we have that \[V_{n,n+1} = c \sqrt{\frac{\hbar}{2m\omega}} \sqrt{n+1} ~\text{and}~ V_{n,n-1} = c \sqrt{\frac{\hbar}{2m\omega}} \sqrt{n}.\] We also have that \(E_n^{(0)} - E_{n+1}^{(0)} = -\hbar\omega\) and \(E_n^{(0)} - E_{n-1}^{(0)} = \hbar\omega\).

Rayleigh-Schrödinger perturbation theory

We now compute the Rayleigh-Schrödinger perturbation theory: \[\begin{aligned} E_n &= \hbar \omega \left(n + \frac{1}{2}\right) + 0 + \frac{\lvert V_{n,n+1} \rvert^2}{E_n^{(0)} - E_{n+1}^{(0)}} + \frac{\lvert V_{n,n-1} \rvert^2}{E_n^{(0)} - E_{n-1}^{(0)}} \\ &= \hbar \omega \left(n + \frac{1}{2}\right) + \frac{c^2}{2m\omega} \frac{\hbar}{\hbar\omega} \left(-(n+1) + n\right) \\ &= \hbar \omega \left(n + \frac{1}{2}\right) - \frac{c^2}{2m\omega^2}. \end{aligned}\] Hence, \(E_n = \hbar \omega (n +\tfrac{1}{2}) - \frac{c^2}{2k}\). This agrees with the exact answer.

As a further check, let’s look at the third-order correction: \[\Delta E_n^{(3)} = \sum_m' \sum_{m'}' \frac{V_{nm} V_{mm'} V_{m'n}}{(E_n^{(0)} - E_m^{(0)})(E_n^{(0)} - E_{m'}^{(0)})} - V_{nn} \sum_m' \frac{\lvert V_{nm} \rvert^2}{(E_n^{(0)} - E_m^{(0)})^2}.\] But, \(V_{nn}=0\) and \(V_{nm} V_{mm'} V_{m'n} =0\) since \(m=n\pm1\) and \(m' = n\pm 1\) in all cases implies that we must also have that \(V_{mm'}=0\). Thus, \(\Delta E_n^{(3)} =0\) and similarly for all \(m\geq 3\), we have \(\Delta E_n^{(m)} =0\).

Wigner-Brillouin perturbation theory

Let’s now turn to Wigner-Brillouin perturbation theory. Here we have: \[E_n = \hbar \omega \left(n + \frac{1}{2}\right) + 0 + \frac{c^2 \hbar}{2m\omega} \left[\frac{n+1}{E_n - \hbar \omega (n+\frac{3}{2})} + \frac{n}{E_n - \hbar \omega (n-\frac{1}{2})}\right]\] Multiply by \((E_n - \hbar \omega (n+\frac{3}{2}))(E_n - \hbar \omega (n-\frac{1}{2}))\) to get: \[\begin{aligned} E_n (E_n - \hbar \omega (n+\tfrac{3}{2}))&(E_n - \hbar \omega (n-\tfrac{1}{2})) \\ &= \hbar \omega (n+\tfrac{1}{2}) (E_n - \hbar \omega (n+\tfrac{3}{2}))(E_n - \hbar \omega (n-\tfrac{1}{2})) \\ &+ \frac{c^2 \hbar}{2m\omega} \bigg[\left(n+1\right)(E_n - \hbar \omega (n-\tfrac{1}{2})) + n(E_n - \hbar \omega (n+\tfrac{3}{2}))\bigg] \end{aligned}\] Expanding, we find that \[\begin{aligned} E_n^3 &+ E_n^2[-\hbar \omega (2n+1) - \hbar\omega(n+\tfrac{1}{2})] \\ &- E_n \left[(\hbar \omega)^2 (n^2 + n - \tfrac{3}{4}+2n^2 +2n+\tfrac{1}{2}) - \frac{c^2 \hbar}{2m\omega}(2n+1)\right] \\ &-(\hbar \omega)^3 \left[n^3 + \tfrac{3}{2}n^2 - \tfrac{1}{4}n - \tfrac{3}{8}\right] + \frac{c^2 \hbar}{2m\omega} \hbar \omega \left[n^2 + \tfrac{1}{2}n - \tfrac{1}{2} + n^2 + \tfrac{3}{2}n\right] = 0. \end{aligned}\] Simplifying, we find that \[\begin{aligned} E_n^3 &+ E_n^2 \left[-\hbar \omega (3n + \tfrac{3}{2})\right] + E_n \left[(\hbar \omega)^2 \left(3n^2 + 3n - \tfrac{1}{4}\right) - \frac{c^2 \hbar}{2m\omega} (2n+1)\right] \\ &- (\hbar \omega)^3 \left[n^3 + \tfrac{3}{2}n^2 - \tfrac{1}{4}n - \tfrac{3}{8}\right] + \frac{c^2 \hbar^2}{2m\omega} (2n^2 + 2n - \frac{1}{2}) = 0. \end{aligned}\] This should factorize if it gives the exact answer. But, we have that \[\begin{aligned} \biggr(E_n &-\left. \hbar \omega \left(n + \frac{1}{2}\right) + \frac{c^2}{2m\omega^2}\right) \\ & \times \left(E_n^2 + E_n \left[-\hbar \omega (2n+1) - \frac{c^2}{2m\omega^2}\right] \right. \\ &\left. ~~~~~~~~~~~~~+ (\hbar \omega)^2 \left(n^2 + n - \frac{3}{4}\right) - \frac{c^2 \hbar}{2m\omega} \left(n + \frac{1}{2}\right) + \frac{c^4}{(2m\omega^2)^2}\right) \end{aligned}\] is off by an extra term \(\frac{c^6}{(2m\omega^2)^3}\), which means that the result will have an error of order \(\mathcal{O} \left(\frac{c^6}{(2m\omega^2)^3}\right)\). Also note that we have 3 roots, not one. This means that some roots ofthe Wigner-Brillouin perturbation theory are unphysical. In general, one often finds that Wigner-Brillouin perturbation theory is less accurate than Rayleigh-Schrödinger perturbation theory, as shown here, which further implies that higher order terms must contribute to cancel extra terms and ultimately give us the exact answer.

Special case of \(n=0\)

Lastly, let’s check the energy for \(n=0\), where we can solve the polynomial equation exactly: \[E_0 = \hbar \omega \frac{1}{2} + \frac{c^2 \hbar}{2m\omega} \frac{1}{E_0 - \frac{3}{2} \hbar \omega},\] This then becomes \[\begin{aligned} E_0^2 - E_0 \cdot \frac{3}{2} \hbar \omega &= \hbar \omega \left(E_0 - \frac{3}{2} \hbar \omega\right) + \frac{c^2 \hbar}{2m\omega}, \\ 0&=E_0^2 - E_0 \cdot 2\hbar \omega + \frac{3}{4}(\hbar \omega)^2 - \frac{c^2 \hbar}{2m\omega} , \end{aligned}\] The solutions are \[\begin{aligned} E_0 &= \hbar \omega + \frac{1}{2} \sqrt{4 (\hbar \omega)^2 - 3 (\hbar \omega)^2 + \frac{2c^2 \hbar}{m\omega}}, \\ &= \hbar \omega \pm \frac{1}{2} \sqrt{(\hbar \omega)^2 + \frac{2c^2 \hbar}{m\omega}}. \end{aligned}\] Now take the root: \[\begin{aligned} E_0 &= \hbar \omega - \frac{1}{2} \hbar \omega \sqrt{1 + \frac{2c^2}{k \hbar \omega}} \\ &= \hbar \omega - \frac{1}{2} \hbar \omega \left(1 + \frac{c^2}{k \hbar \omega} - \frac{4}{8} \left(\frac{c^2}{k \hbar \omega}\right)^2 + \cdots\right) \\ &= -\frac{1}{2} \hbar \omega - \frac{c^2}{2k} + \frac{1}{4} \frac{c^4}{k^2 \hbar \omega} + \cdots \end{aligned}\] Note the error that we have at order \(V^4\)! This will be canceled by higher-order terms.