Phys 506 lecture 19: Degenerate Perturbation Theory IV: Stark effect & spin examples

Hydrogen atom in an electric field

Consider a hydrogen atom in an external electric field: \[\hat{H}_0=\frac{\hat{p}^2}{2\mu}-\frac{e^2}{\hat{r}}, \ \text{and}\ \hat{V}_{FS}=-\frac{1}{8}\frac{\hat{p}^4}{\mu^3c^2}+\frac{1}{2}\left(\frac{\hbar}{mc}\right)^2\hat{\mathbf{L}}\cdot\hat{\mathbf{S}}\frac{e^2}{\hat{r}^3}\] and if we choose the electric field to be in the \(z\)-direction, we have that \[\hat{V}_{Stark}=e\mathbf{\varepsilon}\cdot\hat{\mathbf{r}}=e\varepsilon z=e\varepsilon r\cos{\theta}.\] What are good quantum numbers? For \(\hat{H_0}:\) \[\hat{L}^2,\hat{L}_z,\hat{S}^2,\hat{S}_z,\hat{J}^2,\hat{J}_z\] For \(\hat{H}_0+\hat{H}_{FS}:\) \[\hat{L}^2,\hat{S}^2,\hat{J}^2,\hat{J}_z\] and for \(\hat{H}_0+\hat{H}_{FS}+\hat{H}_{Stark}:\) \[\hat{S}^2,\hat{J}_z.\] \(\hat{V}_{Stark}\) has odd parity so it connects states with different parity (\(l\) odd with \(l\) even).
 
Since the ground state is an \(s\)-wave, there is no linear Stark shift. But, for \(n\ge 2\) different \(l\) are degenerate for \(\hat{H}_0\) so a first order shift is possible.
 
The ground state has \(n=1, l=0, s=\frac{1}{2},\) and \(j=\frac{1}{2}\) with degeneracy coming from the fact that \(m_j=\pm\frac{1}{2}\). But \(m_j\) is a good quantum number so there is no first order shift. So, \[E_{gs}=E_{FS}+E_{Stark}^{(2)}\] since \(E_{Stark}^{(1)}=0\). Then, \[E_{Stark}^{(2)}=\sum_{njl, n\ne1}\frac{|\left\langle njm_sl\middle|\hat{V}_{Stark}\middle|n{=}1,j{=}\frac{1}{2},m_j,l{=}0\right\rangle|^2}{E_1^{(0)}-E_{njl}^{(0)}}\] The smallest value of the denominator is for \(n=2\). The denominator goes like \(\sim\frac{e^2}{a_0}\) and the numerator goes like \(e^2\varepsilon^2a_0^2\) so the shift is on the order of \(\varepsilon^2a_0^3\). \[|E^{(2)}|\le\frac{e^2\varepsilon^2}{E_1^{(0)}-E_2^{(0)}}\sum_{njlm'}\left\langle\frac{1}{2} \ 1 \ m_j \ 0\middle|z\middle|njm'l\right\rangle\left\langle njm'l\middle|z\middle|\frac{1}{2} \ 1 \ m_j \ 0\right\rangle\] But, by completeness \[\sum_{njlm'}\left|njm'l\right\rangle\left\langle njm'l\right|=\mathbb{I}\] so, \[|E^{(2)}|\le\frac{e^2\varepsilon^2}{E_1^{(0)}-E_2^{(0)}}\left\langle 1 \ \frac{1}{2} \ m \ 0\middle|z^2\middle|1 \ \frac{1}{2} \ m \ 0\right\rangle\] Therefore, \[|E^{(2)}|\le\frac{8}{3}\varepsilon^2a_0^3.\] This method is similar to the method of Dalgarno and Lewis (Shiff pg 266) which you may want to look at.

Strong field limit

Here, we can neglect fine structure. The first nontrivial case is \(n=2\). This gives us \(j=\frac{3}{2},\frac{1}{2}\), \(m_j=\pm\frac{3}{2}\) (which have no linear shift) and \(m_j=\pm\frac{1}{2}\) (which can mix states). It turns out that \(m_j=\pm\frac{1}{2}\) are degenerate and called Kramer’s doublets. This gives us three states \(\left|njml\right\rangle\): \[\left|2 \ \frac{3}{2} \ \frac{1}{2} \ 1\right\rangle,\left|2 \ \frac{1}{2} \ \frac{1}{2} \ 1\right\rangle,\left|2 \ \frac{1}{2} \ \frac{1}{2} \ 0\right\rangle\] In the degenerate subspace we have \[\begin{pmatrix}E_2^{(0)} & 0 & a \\ 0 & E_2^{(0)} & b \\ a^* & b^* & E_2^{(0)}\end{pmatrix}\] which is similar to a HW problem. Note that \[\begin{aligned} a=e\varepsilon\left\langle 2 \ \frac{3}{2} \ \frac{1}{2} \ 1\middle|z\middle|2 \ \frac{1}{2} \ \frac{1}{2} \ 0\right\rangle=a^* \\ b=e\varepsilon\left\langle 2 \ \frac{1}{2} \ \frac{1}{2} \ 1\middle|z\middle|2 \ \frac{1}{2} \ \frac{1}{2} \ 0\right\rangle=b^* \end{aligned}\] After converting to wavefunctions and integrating, one can find \[\begin{aligned} a=-\sqrt{6}a_0e\varepsilon \\ b=-\sqrt{3}a_0e\varepsilon \end{aligned}\] Now, we find the eigenvalues, \[\det\begin{pmatrix}E_2^0-E & 0 & a \\ 0 & E_2^0-E & \frac{1}{\sqrt{2}}a \\ a & \frac{1}{\sqrt{2}}a & E_2^0-E\end{pmatrix}(E_2^0-E)^3-(E_2^0-E)a^2\frac{3}{2}=0\] \[\implies E=E_2^0,E=E_2^0\pm3a_0e\varepsilon\]

Weak field limit

We normally take relativistic effects and spin orbit coupling first then add the Stark effect but we can do it all at once. The \(2p_{3/2}\) level has energy \(E_{3/2}\) and the \(2p_{1/2}2s_{1/2}\) level has energy \(E_{1/2}\). \[\det\begin{pmatrix}E_{3/2} & 0 & a \\ 0 & E_{1/2}-E & \frac{1}{\sqrt{2}}a \\ a & \frac{1}{\sqrt{2}}a & E_{1/2}-E\end{pmatrix}=(E_{3/2}-E)(E_{1/2}-E)^2-(E_{1/2}-E)|a|^2-(E_{3/2}-E)\frac{|a|^2}{2}=0\] which we solve to get the roots. The algebra is straightforward but not too illuminating.

Spin example

Consider 3 spins on a triangle: \[\hat{H}=A(\hat{\mathbf{S}_1}\cdot\hat{\mathbf{S}_2}+\hat{\mathbf{S}_2}\cdot\hat{\mathbf{S}_3}+\hat{\mathbf{S}_3}\cdot\hat{\mathbf{S}_1})+BS_1^z\] for a small \(B\)-field. Here \(J_z\) is a good quantum number. Here there are \(2^3=8\) states labeled with \(J,m_j\). \(j=\frac{3}{2}\) has 4 states, \(j=\frac{1}{2}\) has 2 states, and \(j=\frac{1}{2}\) has 2 states. Use \(S_{tot}^-=S_1^-+S_2^-+S_3^-\) to get all of the states. \[\begin{aligned} \left|j=\frac{3}{2},m_j=\frac{3}{2}\right\rangle=& \ \left|\uparrow\uparrow\uparrow\right\rangle \\ \left|j=\frac{3}{2},m_j=\frac{1}{2}\right\rangle=& \ \frac{1}{\sqrt{3}}(\left|\downarrow\uparrow\uparrow\right\rangle+\left|\uparrow\downarrow\uparrow\right\rangle+\left|\uparrow\uparrow\downarrow\right\rangle) \\ \left|j=\frac{3}{2},m_j=-\frac{1}{2}\right\rangle=& \ \frac{1}{\sqrt{3}}(\left|\downarrow\downarrow\uparrow\right\rangle+\left|\downarrow\uparrow\downarrow\right\rangle+\left|\uparrow\downarrow\downarrow\right\rangle) \\ \left|j=\frac{3}{2},m_j=-\frac{3}{2}\right\rangle=& \ \left|\downarrow\downarrow\downarrow\right\rangle \\ \end{aligned}\] Then, \[\begin{aligned} \left|j=\frac{1}{2},m_j=\frac{1}{2}\right\rangle=& \ \frac{1}{\sqrt{2}}(\left|\downarrow\uparrow\uparrow\right\rangle-\left|\uparrow\downarrow\uparrow\right\rangle)\equiv\left|1\right\rangle \\ \left|j=\frac{1}{2},m_j=-\frac{1}{2}\right\rangle=& \ \frac{1}{\sqrt{2}}(\left|\downarrow\uparrow\downarrow\right\rangle-\left|\uparrow\downarrow\downarrow\right\rangle) \end{aligned}\] and \[\begin{aligned} \left|j=\frac{1}{2},m_j=\frac{1}{2}\right\rangle'=& \ \frac{1}{\sqrt{6}}(\left|\downarrow\uparrow\uparrow\right\rangle+\left|\uparrow\downarrow\uparrow\right\rangle-2\left|\uparrow\uparrow\downarrow\right\rangle)\equiv\left|2\right\rangle \\ \left|j=\frac{1}{2},m_j=-\frac{1}{2}\right\rangle'=& \ \frac{1}{\sqrt{6}}(\left|\downarrow\uparrow\downarrow\right\rangle+\left|\uparrow\downarrow\downarrow\right\rangle-2\left|\downarrow\downarrow\uparrow\right\rangle) \end{aligned}\] Note \(S_1\cdot S_2+S_2\cdot S_3+S_3\cdot S_1=\frac{1}{2}((S_1+S_2+S_3)^2-S_1^2-S_2^2-S_3^2)\). Now, consider the \(j=\frac{1}{2},m_j=\frac{1}{2}\) state. \[E_0^0=-\frac{3}{4}A\] which is two-fold degenerate. Then, \[\begin{aligned} \left\langle 1\middle|S_1^z\middle|1\right\rangle=& \ 0 \\ \left\langle 1\middle|S_1^z\middle|2\right\rangle=& \ \frac{1}{\sqrt{2}}(\left\langle\downarrow\uparrow\uparrow\right|-\left\langle\uparrow\downarrow\uparrow\right|)\frac{1}{\sqrt{6}}\cdot\frac{1}{2}(\left|\downarrow\uparrow\uparrow\right\rangle+\left|\uparrow\downarrow\uparrow\right\rangle-2\left|\uparrow\uparrow\downarrow\right\rangle) \\ =& \ -\frac{1}{2\sqrt{3}} \\ \left\langle 2\middle|S_1^z\middle|1\right\rangle=& \ -\frac{1}{2\sqrt{3}} \\ \left\langle 2\middle|S_1^z\middle|2\right\rangle=& \ \frac{1}{6}\cdot\frac{1}{2}(\left\langle\downarrow\uparrow\uparrow\right|+\left\langle\uparrow\downarrow\uparrow\right|-2\left\langle\uparrow\uparrow\downarrow\right|)(\left|\downarrow\uparrow\uparrow\right\rangle+\left|\uparrow\downarrow\uparrow\right\rangle-2\left|\uparrow\uparrow\downarrow\right\rangle) \\ =& \frac{1}{3} \end{aligned}\] Then, we find the eigenvalues \[\det\begin{pmatrix}-\frac{3}{4}A-E & -\frac{B}{2\sqrt{3}} \\ -\frac{B}{2\sqrt{3}} & -\frac{3}{4}A+\frac{B}{3}-E\end{pmatrix}=0\] \[E^2-E\left(-\frac{3}{2}A+\frac{B}{3}\right)+\frac{9}{16}A^2-\frac{AB}{4}-\frac{B^2}{12}=0\] Hence, \[E=-\frac{3}{4}A+\frac{B}{6}\pm\frac{1}{3}B\] Compare with the exact solution which comes from a cubic equation. \[\det\begin{pmatrix}-\frac{3}{4}A-E & -\frac{B}{2\sqrt{3}} & -\frac{B}{\sqrt{6}} \\ -\frac{B}{2\sqrt{3}} & -\frac{3}{4}A+\frac{1}{3}B-E & -\frac{B}{3\sqrt{2}} \\ -\frac{B}{\sqrt{6}} & -\frac{B}{3\sqrt{2}} & \frac{3}{4}A+\frac{1}{6}B-E\end{pmatrix}=0\] Using Mathematica gives \[\begin{aligned} E=& \ -\frac{3}{4}A+\frac{1}{2}B \checkmark \\ E=& \ -\frac{1}{4}\sqrt{9A^2+4AB+4B^2}=-\frac{3}{4}A-\frac{1}{6}B +\cdots\checkmark \\ E=& \ \frac{1}{4}\sqrt{9A^2+4AB+4B^2}=\frac{3}{4}A+\frac{1}{6}B+\cdots \end{aligned}\]