Start with time-dependent Schrodinger equation in coordinate basis
\[i \hbar \frac{\partial}{\partial t}
\psi(\mathbf{r}, t)=\left(-\frac{\hbar^{2}}{2 m}
\nabla^{2}+V(\mathbf{r})\right) \psi(\mathbf{r}, t).\] The
probability density to find the particle in the region around \(\mathbf{r}\) is \[\rho(\mathbf{r}, t)=|\psi(\mathbf{r},
t)|^{2}=\psi^{*}(\mathbf{r}, t) \psi(\mathbf{r}, t).\] The
equation of continuity says that the change in the particle density must
arise from the flow of currents, since particles are not created or
destroyed. So \[\frac{d}{d t}
\rho(\mathbf{r}, t)+\mathbf{\nabla} \cdot \mathbf{J}(\mathbf{r},
t)=0\] is the equation of continuity (recall
electromagnetism).
We use this equation to find \(\mathbf{J}\): \[\frac{d}{d t} \rho(\mathbf{r},
t)=\frac{\partial}{\partial t} \psi^{*}(\mathbf{r}, t) \psi(r,
t)+\psi^{*}(\mathbf{r}, t) \frac{\partial}{\partial t} \psi(\mathbf{r},
t).\] But \[\frac{\partial}{\partial
t} \psi=\frac{i \hbar}{2 m} \nabla^{2} \psi+\frac{V}{i \hbar} \psi
\qquad \text{and}\quad \frac{\partial}{\partial t} \psi^{*}=-\frac{i
\hbar}{2 m} \nabla^{2} \psi^{*}+\frac{V}{i \hbar} \psi^{*}\] So
\[\begin{aligned}
\frac{d}{d t} \rho(\mathbf{r}, t) & =\frac{i \hbar}{2
m}\left(\psi^{*} \nabla^{2} \psi-\nabla^{2} \psi^{*}
\psi\right)+\frac{V}{i \hbar}\left(\psi^{*} \psi-\psi^{*} \psi\right) \\
& =\mathbf{\nabla} \cdot \frac{i \hbar}{2m}\left(\psi^{*}
\mathbf{\nabla} \psi-\mathbf{\nabla} \psi^{*} \psi\right) \quad \text {
because } \mathbf{\nabla} \psi^{*} \cdot \mathbf{\nabla} \psi \text {
terms cancel } \\
\Rightarrow& \boxed{\mathbf{J}= \frac{\hbar}{2 i m}\left(\psi^{*}
\mathbf{\nabla} \psi-\mathbf{\nabla} \psi^{*} \psi\right)}
\end{aligned}\]
Check: for a free particle \[\begin{aligned}
\psi_{\text{free}}(\mathbf{r}, t)&=e^{i \mathbf{k} \cdot
\mathbf{r}-i \frac{\hbar k^{2}}{2 m} t} \\
\mathbf{J}&=\frac{\hbar \mathbf{k}}{2 m} \times 2 \psi^{*}
\psi=\frac{\hbar \mathbf{k}}{m} \psi^{*}(\mathbf{r}, t) \psi(\mathbf{r},
t)
\end{aligned}\] But \(\frac{\hbar
\mathbf{k}}{m}=\mathbf{v}= \text{ velocity}\) \(\Rightarrow\) current takes probability to
find particle at position \(\mathbf{r}\) at time \(t\) and multiplies by the particle’s
velocity. This is what a current should be.
Simple example of 1D scattering—delta function potential at \(x=0\): \[V(x)=-\lambda \delta(x) \quad
\lambda>0\] We have an incident wave from the left (looks like
\(e^{ikx}\) far away)
So for \[\begin{aligned}
x < 0 \qquad &\psi(x, t)=\psi_{\text {incident }}(x,
t)+\psi_{\text {reflected }}(x, t)\\
x>0 \qquad &\psi(x, t)=\psi_{\text{transmitted}}(x,t) \quad
\text{ assume stationary so no } t \text{ dependence}
\end{aligned}\] \[\psi(x,t)
=\left\{\begin{array}{cc}
A(e^{ikx}+re^{-ikx}) & \quad x<0 \\
Ate^{ikx} & \quad x>0
\end{array} \right .\] \(r=\)
Reflection amplitude \(\qquad t=\)
Transmission amplitude
Now, we use the fact that \(\psi(x)\)
is continuous across \(x=0\). This
implies that \(A(1+r)=A t\) or \(1+r=t\).
Now, the potential vanishes everywhere except at \(x=0\). But, \(\left.\frac{d \psi}{d
x}\right|_{x=0^{+}}-\left.\frac{d \psi}{d
x}\right|_{x=0^{-}}=\int_{x=0^{-}}^{x=0^{+}} d x \frac{d^{2} \psi}{d
x^{2}}=-\frac{2 m}{\hbar^{2}} \int_{x=0^{-}}^{x=0^{+}} d
x\frac{-\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}\) and \(-\frac{\hbar^{2}}{2m} \frac{d^{2} \psi}{d
x^{2}}=(E-V(x)) \psi\), so \[\left.\frac{d \psi}{d
x}\right|_{x=0^{+}}-\left.\frac{d \psi}{d x}\right|_{x=0^{-}}=-\frac{2 m
}{\hbar^{2}}
E\left(\underbrace{\psi\left(x{=}0^{+}\right)-\psi\left(x{=}0^{-}\right)}_{0
\text{ since } \psi\text{ is continuous} }\right)-\frac{2 m
\lambda}{\hbar^{2}} \psi(x{=}0)\] From this result, we can read
off what the amplitudes are, so \[Aikt -
Aik(1-r)=-\frac{2 m \lambda}{\hbar^{2}} A t \qquad \text { with }
r=t-1.\] Hence, \[i
k(t-1+t-1)=-\frac{2 m \lambda}{\hbar^{2}} t \qquad \text{and}\quad
t=\frac{2 i k}{2 i k+\frac{2 m \lambda}{\hbar^{2}}}=\frac{+i
\frac{\hbar^{2} k}{m \lambda}}{1+\frac{i \hbar^{2} k}{m
\lambda}}.\] Simplifying, we have \[\boxed{
r=t-1=-\frac{1}{1+i \frac{\hbar^{2} k}{m \lambda}} \quad \text{and}
\quad t=\frac{+i \frac{\hbar^2 k}{m \lambda}}{1+ i\frac{\hbar^{2} k}{m
\lambda}} }\]
Note that these results satisfy \(|r|^{2}+|t|^{2}=1\) \[\begin{aligned}
& |r|^{2}=R=\text { reflection coefficient } \\
& |t|^{2}=T=\text { transmission coefficient }
\end{aligned}\] \(R+T=1\) is a
consequence of conservation of probability, hence it always holds.
Now we treat a more formal theory of one -dimensional scattering.
We start from time dependent Schrodinger equation \[i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\left(\hat{H}_{0}+\hat{V}\right)|\psi(t)\rangle \quad \text{and}\quad \hat{H}_{0}=\frac{\hat{P}^{2}}{2 m}=\text { kinetic energy. }\]
We define the Green’s function to satisfy \[\left(i \hbar \frac{\partial}{\partial t}-\hat{H}_{0}\right) \hat{G}_{0}\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \quad \text { which is called the equation of motion }\]
Since the delta function acts like a unit matrix, one can think of
Green’s function as the inverse of the left most operator in the above
equation (\(M^{-1}M=\mathbf{I}\)).
Since \(G_0\) has a delta function in
its equation of motion, it must be discontinuous at \(t=t^{\prime}\).
Immediately, we break up the Green’s function into its two different
pieces \[\begin{aligned}
& \hat{G}_{0}\left(t, t^{\prime}\right)=\hat{G}_{0+}\left(t,
t^{\prime}\right)+\hat{G}_{0-}\left(t, t^{\prime}\right) \\
& \hat{G}_{0 +}\left(t, t^{\prime}\right)=-\frac{i}{\hbar}
\theta\left(t-t^{\prime}\right) e^{-i
\hat{H}_{0}\left(t-t^{\prime}\right)/\hbar} \quad \text { retarded } \\
& \hat{G}_{0-}\left(t,
t^{\prime}\right)=\frac{i}{\hbar}\theta\left(t^{\prime}-t\right) e^{-i
\hat{H}_{0}\left(t-t^{\prime}\right) / \hbar} \quad\quad \text {
advanced }
\end{aligned}\] This solves the equation of motion, where \[\theta(t)=\left[\begin{array}{ll}
0 & t<0 \\
1 & t>0
\end{array} \quad \text { and } \quad \frac{d}{d t}
\theta(t)=\delta(t)\right.\] as can be seen by noting \(\frac{d}{d t} \theta(t)=0\) everywhere
except at \(t=0\) where we have that
\(\int_{t=0-}^{t=0+} \frac{d}{d t} \theta(t) d
t =\theta\left(t{=}0{+}\right)-\theta(t{=}0-) =1-0=1\). So \(\frac{d}{d t} \theta(t)=0\) everywhere and
\(\int_{0-}^{0+} d t \frac{d}{d t} \theta(t)=1
\Rightarrow\) delta function.
Using \(\hat{G}_{0}\) we find \[|\psi(t)\rangle=\left|\psi_{0}(t)\right\rangle+\int_{-\infty}^{+\infty}
d t^{\prime} \hat{G}_{0}\left(t, t^{\prime}\right)
\hat{V}\left(t^{\prime}\right)|\psi(t)\rangle\] Where \(\left|\psi_{0}(t)\right\rangle\) is the
free quantum state, which satisfies \[\left.\left.i \hbar\frac{ d}{d t} \right\rvert\,
\psi_{0}(t)\right\rangle=\hat{H}_{0}\left|\psi_{0}(t)\right\rangle.\]
Proof: \[\underbrace{\left(i \hbar \frac{d}{d t}-\hat{H}_{0}\right)}_{\text{from R.H.S}}|\psi(t)\rangle=\underbrace{\left(i \hbar \frac{d}{d t}-\hat{H}_{0}\right)}_{\text{is zero}}\left|\psi_{0}(t)\right\rangle+\underbrace{\hat{V}(t)|\psi(t)\rangle}_{\text{from full Schro. eq'n}}.\]
Now multiply by the inverse-operator from the left \[\begin{aligned}
& \left(i\hbar\frac{d}{d t}-\hat{H}_{0}\right)^{-1} \text { on the
left } \\
& |\psi(t)\rangle=\left|\psi_{0}(t)\right\rangle+\int d
t^{\prime}\left(i \hbar \frac{d}{d
t}-\hat{H}_{0}\right)^{-1}_{t,t^{\prime} \text{ matrix
element}} \underbrace{\hat{V}(t^{\prime})\left|\psi\left(t^{\prime}\right)\right\rangle}_{\text{vector}}
\\
\end{aligned}\] where the \(t,t'\) matrix element of the inverse
operator is the Green’s function. Note that matrix multiplication of a
continuous operator requires an integration over one index.
But \(\hat{G}_{0}(t, t^{\prime})\) is
the inverse operator from the equation of motion, so
\[|\psi(t)\rangle=\left|\psi_{0}(t)\right\rangle+\int dt^{\prime} \hat{G}_{0}\left(t, t^{\prime}\right) \hat{V}\left(t^{\prime}\right)\left|\psi\left(t^{\prime}\right)\right\rangle\]
Now substitute in \(\hat{G}_{0}=\hat{G}_{0+}\) only because we
are interested in retarded solutions which build up in time from the
history of what happened for all earlier times. If you like, this is a
postulate where we are introducing an "arrow of time".
So we get \[|\psi(t)\rangle=\left|\psi_{0}(t)\right\rangle-\frac{i}{\hbar}
e^{-i \hat{H}_{0} t/\hbar} \int_{-\infty}^{t} d t^{\prime} e^{+i
\hat{H}_{0} t^{\prime} / \hbar}
\hat{V}\left(t^{\prime}\right)\left|\psi\left(t^{\prime}\right)\right\rangle\]
as \(t \rightarrow-\infty \quad|\psi(t)\rangle
\rightarrow\left|\psi_{0}(t)\right\rangle\) which is what we want
if \(V\) is bounded.
Hence one can also view this choice as a way to satisfy the boundary
condition.
Now, unlike bound state problems, when \(E>V\), we expect there to be a continuum
of possible states. Let \(E\) be the
energy of the initial state such that \[\begin{aligned}
& \left|\psi_{0}(t)\right\rangle=e^{-i E t /
\hbar}\left|\psi_{0}\right\rangle \quad \text { as } t
\rightarrow-\infty \\
& |\psi(t)\rangle=e^{-i E t / \hbar}|\psi\rangle \text { as } t
\rightarrow-\infty
\end{aligned}\] Since we expect energy to be conserved if \(\hat{V}\) is independent of time, we expect
the energy to stay at \(E\) for all
time. Hence we write \[|\psi(t)\rangle=e^{-i
E t / \hbar}|\psi\rangle \text { for all } t \text {. }\] Then we
get \[|\psi\rangle=\left|\psi_{0}\right\rangle-\frac{i}{\hbar}
e^{-i\left(\hat{H}_{0}-E\right) t / \hbar} \int_{-\infty}^{t} d
t^{\prime} e^{i\left(H_{0}-E\right) t^{\prime}/\hbar}
\hat{V}|\psi\rangle.\]
It is mathematically convenient to think of \(\hat{V}\) being turned on over some time interval in the infinite past, so we let \(\hat{V} \rightarrow \hat{V} e^{\delta t / \hbar} \qquad \delta \rightarrow 0^{+}\). This may sound like an odd thing to do, but it helps control some infinities one gets, if we do not do it.
Substituting in, we can now integrate \[\begin{aligned} |\psi\rangle & \left.=\mid \psi_{0}\right\rangle-\frac{i}{\hbar} e^{-i\left(\hat{H_{0}}-E\right) t/\hbar} \int_{-\infty}^{t} d t^{\prime} e^{i\left(\hat{H}_{0}-E\right) t^{\prime} / \hbar} e^{\delta t^{\prime} / \hbar} \hat{V}|\psi\rangle \\ & \left.=\mid \psi_{0}\right\rangle-\left.\frac{i}{\hbar} e^{-i\left(\hat{H}_{0}-E\right) t / \hbar} \frac{\hbar e^{i\left(\hat{H}_{0}-E\right) t^{\prime} / \hbar+\delta t^{\prime} / \hbar}}{i\left(\hat{H}_{0}-E\right)+\delta}\right|_{-\infty} ^{t} \hat{V} | \psi\rangle \end{aligned}\] The \(e^{\delta t^{\prime} / \hbar}\) makes the contribution vanish as \(t^{\prime} \rightarrow-\infty\) and we take the limit \(\delta \rightarrow 0^{+}\) for the \(e^{\delta t / \hbar}\) term so it approaches 1 and we obtain \[\begin{aligned} & |\psi\rangle=\left|\psi_{0}\right\rangle-\frac{e^{-i\left(\hat{H}_{0}-E ) t / \hbar\right.} e^{i\left(\hat{H}_{0}-E ) t\right.}}{\hat{H}_{0}-E-i \delta} \hat{V}|\psi\rangle \\ & |\psi\rangle=|\psi _0\rangle+\frac{i}{E-\hat{H}_{0}+i \delta} \hat{V}|\psi\rangle \end{aligned}\]
This is called the Lippman-Schwinger equation.