Phys 506 lecture 3

In this lecture, we use the identities we just developed to determine the simple harmonic oscillator wavefunctions and other properties. The approach given here is a little different from what you will see in textbooks.

Factorizing the Hamiltonian

The SHO Hamiltonian is

Ĥ=p̂22m+12mω02x̂2\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} \hat{x}^{2} Many textbooks postulate ladder operations as a "trick" solution, but if we think of factorizing, like with polynomials, we would try 12m(p̂+imω0x̂)Â12m(p̂imω0x̂)Â\underbrace{\frac{1}{\sqrt{2m}}(\hat{p} + im \omega_0 \hat{x})}_{\hat{A}^{\dagger}}\underbrace{\frac{1}{\sqrt{2m}}(\hat{p} - im \omega_0 \hat{x})}_{\hat{A}} for factorizing the sum of squares. You might next ask why not factor in the opposite order as ÂÂ\hat{A}\hat{A}^{\dagger}? We will answer the ordering question later.
Now, when we work out the product, because they are operators, we find an extra term from the commutator, or ÂÂ=12m(p̂2imω0[p̂,x̂]i+m2ω02x̂2)=Ĥ12ω0.\begin{aligned} \hat{A}^{\dagger} \hat{A} & =\frac{1}{2 m}\left(\hat{p}^{2}-i m \omega_{0}\underbrace{[\hat{p}, \hat{x}]}_{-i\hbar}+m^{2} \omega_{0}^{2} \hat{x}^{2}\right) \\ & =\hat{H}-\frac{1}{2} \hbar \omega_{0}. \end{aligned} So, we have Ĥ=ÂÂ+12ω0.\hat{H}=\hat{A}^{\dagger} \hat{A}+\frac{1}{2} \hbar \omega_{0}.

Finding energy eiegenstates

If we recall, for an eigenstate |ψ|\psi\rangle, we have E=ψ|Ĥ|ψE=\langle\psi| \hat{H}|\psi\rangle, with normalized |ψ|\psi\rangle, then we see for this case

E=ψ|Ĥ|ψ=ψ|ÂÂ|ψ+12ω0E12ω0, since ψ|ÂÂ|ψ=Â|ψ20\begin{aligned} & E=\langle\psi| \hat{H}|\psi\rangle=\langle\psi| \hat{A}^{\dagger}\hat{A}|\psi\rangle+\frac{1}{2} \hbar \omega_{0} \\ \Rightarrow ~& E \geq \frac{1}{2} \hbar \omega_{0} \text {, since }\langle\psi| \hat{A^{\dagger}} \hat{A}|\psi\rangle=\| \hat{A}|\psi\rangle \|^{2} \geqslant 0 \end{aligned}

Hence, if we can find a state with Â|0=0\hat{A}|0\rangle=0, then this would be the ground state and we would have $E_{\text g s}=\frac{1}{2} \hbar \omega_{0}$.
For now, we assume such a state exists. Later, we will see that it does.
We next work out the intertwining relation (moving Â\hat{A}^{\dagger} through Ĥ)\left.\hat{H}\right). We start by writing out the product with the raising operator on the right, and then use the commutator to change the order of the pair of operators on the right. So, we have ĤÂ=(ÂÂ+12ω0)Â=Â(ÂÂ+[Â,Â̂]ÂÂ+12ω0).\hat{H} \hat{A}^{\dagger}=\left(\hat{A}^{\dagger} \hat{A}+\frac{1}{2} \hbar \omega_{0}\right) \hat{A}^{\dagger}=\hat{A}^{\dagger}\left (\underbrace{\hat{A}^{\dagger}\hat{A}+\left[\hat{A} , \hat{\hat{A}}^{\dagger}\right]}_{\hat{A}\hat{A}^{\dagger}}+\frac{1}{2} \hbar \omega_{0}\right ). But, we have [Â,Â]=12m[p̂imω0x̂,p̂+imω0x̂]=12m2imω0[p̂,x̂]=ω0,\left[\hat{A} , \hat{A}^{\dagger}\right]=\frac{1}{2 m}\left[\hat{p}-i m \omega_{0} \hat{x}, \hat{p}+i m \omega_{0} \hat{x}\right] =\frac{1}{2 m} 2 i m \omega_{0}[\hat{p}, \hat{x}]=\hbar \omega_{0}, so, we have ĤÂ=Â(Ĥ+w0).\hat{H} \hat{A}^{\dagger}=\hat{A}^{\dagger}\left(\hat{H}+\hbar w_{0}\right). In words, moving the harmonic oscillator Hamiltonian past a raising operator originally on the right, shifts the Hamiltonian by ω0\hbar\omega_0.

We use this to find all of the hiher-energy eigenstates. Our claim is that (Â)n|0\left(\hat{A}^{\dagger}\right)^{n}|0\rangle is an energy eigenstate. Our proof just uses the intertwining relation.
Proof: Ĥ(Â)n|0=ĤÂ(Â)n1=Â(Ĥ+ω0)(Â)n1repeat n-1 more times |0\hat{H}(\hat{A}^{\dagger})^{n}|0\rangle=\hat{H} \hat{A}^{\dagger}(\hat{A}^{\dagger})^{n-1}=\hat{A}^{\dagger}\underbrace{(\hat{H}+\hbar \omega_{0})(\hat{A}^{\dagger})^{n-1} }_{\text {repeat n-1 more times }} |0\rangle

=(Â)n(Ĥ+nω0)|0=(Â)n(12ω0+nω0)|0=(n+12)ω0(Â)n|0=En(Â)n|0.\begin{aligned} & =\left(\hat{A}^{\dagger}\right)^{n}\left(\hat{H}+n \hbar \omega_{0}\right)|0\rangle=\left(\hat{A}^{\dagger}\right)^{n}\left(\frac{1}{2} \hbar \omega_{0}+n \hbar \omega_{0}\right)|0\rangle \\ & =\left(n+\frac{1}{2}\right) \hbar \omega_{0}\left(\hat{A}^{\dagger}\right)^{n}|0\rangle=E_{n}\left(\hat{A}^{\dagger}\right)^{n}|0\rangle. \end{aligned} So En=(n+12)w0.E_{n}=\left(n+\frac{1}{2}\right) \hbar w_{0} .

We also use this to normalize the energy eigenstate. To do this, we identify an ÂÂ\hat{A}\hat{A}^\dagger term in the center of the string of operators in the norm. We replace it by the Hamiltonian, and then use intertwining to evaluate it against the state on the right. We have 0|(Â)n(Â)n|0=0|(Â)n1ÂÂ(Â)n1|0=0|(Â)n1(Ĥ+12ω0)(Â)n1|0=0|(Â)n1(Â)n1(Ĥ+(n12)ω0)|0=nω00|(Â)n1(Â)n1|0\begin{aligned} \langle 0|(\hat{A})^{n}(\hat{A}^{\dagger})^{n}|0\rangle & =\langle 0|(\hat{A})^{n-1} \hat{A} \hat{A}^{\dagger}(\hat{A}^{\dagger})^{n-1}|0\rangle \\ & =\langle 0|(\hat{A})^{n-1}\left(\hat{H}+\frac{1}{2} \hbar \omega_{0}\right)(\hat{A}^{\dagger})^{n-1}|0\rangle \\ & =\langle 0|(\hat{A})^{n-1}(\hat{A}^{\dagger})^{n-1}\left(\hat{H}+\left(n-\frac{1}{2}\right) \hbar \omega_{0}\right)|0\rangle \\ & =n \hbar \omega_{0}\langle 0|(\hat{A})^{n-1}\left(\hat{A}^{\dagger}\right)^{n-1}|0\rangle \end{aligned} Repeat n1n-1 more times:

=n!(ω0)n00assume normalized.=n!\left(\hbar \omega_{0}\right)^{n}\underbrace{\langle 0 \mid 0\rangle}_{\text{assume normalized}}. So |n=(Â)nn!(ω0)n/2 |0) has En=ω0(n+12).\boxed{ |n\rangle=\frac{\left(\hat{A}^{\dagger}\right)^{n}}{\sqrt{n!}\left(\hbar \omega_{0}\right)^{n / 2}} \text { |0) } \text { has } E_{n}=\hbar \omega_{0}\left(n+\frac{1}{2}\right). }

This may not look like what you are used to. It is conventional to redefine the operators via â=iω0Ââ=iω0Ââ=mω02(x̂i1mω0p̂)â=mω02(x̂+i1mω0p̂).\begin{aligned} & \hat{a}^{\dagger}=\frac{-i}{\sqrt{\hbar \omega_{0}}} \hat{A}^{\dagger} \qquad \hat{a}=\frac{i}{\sqrt{\hbar \omega_{0}}} \hat{A} \\ & \hat{a}^{\dagger}=\sqrt{\frac{m \omega_{0}}{2 \hbar}}\left(\hat{x}-i \frac{1}{m \omega_{0}} \hat{p}\right) \quad \hat{a}=\sqrt{\frac{m \omega_{0}}{2 \hbar}}\left(\hat{x}+i \frac{1}{m \omega_{0}} \hat{p}\right). \end{aligned} Then, [â,â]=1,Ĥ=ω0(ââ+12),â|0=0,|n=(â)nn!|0 we removed an inconsequential phase of(i)n\left[\hat{a}, \hat{a}^{\dagger}\right]=1, \hat{H}=\hbar \omega_{0}\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right), \hat{a}|0\rangle=0, |n\rangle=\underbrace{\frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}}|0\rangle}_{\text{ we removed an inconsequential phase of}~ (-i)^{n}}

Wavefunctions

Next up, we calculate the wave function. Recall, the eigenstate of position satisfies x̂|x=x|x,\hat{x}|x\rangle=x|x\rangle,
which is an operator acting on a state giving us a number times that state.

Claim: |x=eixnumberp̂operator|x=0.|x\rangle=e^{-\frac{i}{\hbar} \overbrace{x}^{\text{number}} \overbrace{\hat{p}}^{\text{operator}} }{|x{=}0\rangle}.

Proof: x̂|x=1insert eixp̂eixp̂x̂(eixp̂|x=0)X̂|x=eixp̂eixp̂X̂eixp̂Hadamard |x=0=eixp̂(x̂+ix[p̂,x̂]+12(ix)2[p̂,[p̂,x]]+)|x=0=eixp̂(x̂+x)|x=0.\begin{aligned} & \hat{x}|x\rangle=\underbrace{1}_{\text{insert } e^{-i\frac{x \hat{p}}{\hbar}}e^{i\frac{x \hat{p}}{\hbar}}}\hat{x}\left(e^{-i \frac{x \hat{p}}{\hbar}}|x{=}0\rangle\right) \\ & \hat{X}|x\rangle=e^{i x \frac{\hat{p}}{\hbar}} \underbrace{e^{i \frac{x\hat{p}}{\hbar}} \hat{X} e^{-i \frac{x \hat{p}}{\hbar}}}_{\text {Hadamard }}|x{=}0\rangle \\ & =e^{-i x \frac{\hat{p}}{\hbar}}\left (\hat{x}+\frac{i x}{\hbar}[\hat{p}, \hat{x}]+\frac{1}{2}\left(\frac{i x}{\hbar}\right)^{2}[\hat{p},[\hat{p}, \bar{x}]] + \cdots \right )|x{=}0\rangle \\ & =e^{-i \frac{x\hat{p}}{\hbar}}(\hat{x}+x) |x{=}0\rangle. \end{aligned} But, x̂|x=0=0|x=0=0\hat{x}|x{=}0\rangle=0\,|x{=}0\rangle{=}0 \quad \Rightarrow x̂|x=xeixp̂|x=0=x|x\hat{x}|x\rangle=x e^{-i \frac{x\hat{p}}{\hbar}}|x{=}0\rangle=x|x\rangle So it is an eigenfunction!
The operator eixp̂e^{-i \frac{x\hat{p}}{\hbar}} is called the translation operator.
Before we calculate the wavefunction, it is worthwhile to talk about what it really is. The wavefunction is constructed by the overlap of two eigenfunctions from non-commuting operators. We should not think of this as a physical state the particle is in inbetween measurements. It is instead a calculational tool used to determine the results of experiments. Oftentimes, conventional QM instruction overemphasizes the importance of the wavefunction in coordinate space. You should not. We can interpret the overlap in two ways. For example ψn(x)=x|n\psi_{n}(x)=\langle x | n\rangle can be thought of as the probability amplitude to find a particle that has energy EnE_n to be found in the region near xx (we assume the energies are nondegenerate for simplicity here). Similarly, the probability amplitude (technically the complex conjugate of the probability amplitude) to find a particle located near xx to have energy EnE_n. It is important to note that

|x|n|2=|n|x|2,|\langle x | n\rangle|^{2}=|\langle n | x\rangle|^{2}, so the probabilities of both statements are the same.

It is easy to overemphasize the importance of ψ(x)\psi({x}), even though we can also find ψ(p)\psi(p) and other wavefunctions. When we look at this from an operator perspective, we will see that we can employ translation to relate the amplitude at the origin to the ampitude anywhere else. Amazingly, the results come entirely from operator algebra and the fact that [x̂,p̂]=i[\hat{x}, \hat{p}]=i \hbar. In particular, we do not need the Schrodinger equation or any other differential equation to tell us how to determine the wavefunction. It follows from the properties of the ground state and the ladder operators. This holds not just for the simple harmonic oscillator, but we will see it holds for all solvable problems later in the course!
Now we calculate the wave function of the simple harmonic oscillator in coordinate space: ψn(x)=x|n=x=0|eixp̂(â)nn!|0.\psi_{n}(x)=\langle x| n\rangle=\langle x{=}0| e^{i \frac{x \hat{p}}{\hbar} }\frac{\left(\hat{a}^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle.
But, p̂=(ââ)mω02i2mω0=imω02(ââ).\hat{p}=\frac{\left(\hat{a}-\hat{a}^{\dagger}\right) m \omega_{0}}{2 i} \sqrt{\frac{2 \hbar}{m \omega_{0}}}=-i \sqrt{\frac{\hbar m \omega_{0}}{2}}\left(\hat{a}-\hat{a}^{\dagger}\right).  So, the operator eixp̂=exmω02(ââ)e^{i \frac{ x\hat{p}}{\hbar}}=e^{x \sqrt{\frac{m \omega_{0}}{2 \hbar}}\left(\hat{a}-\hat{a}^{\dagger}\right)}.

The question we now have is how do we use these operators to get the wavefunction? We only know two things about the states â|0=0 and x̂|x=0=0.\hat{a}|0\rangle=0 \text { and } \hat{x}|x{=}0\rangle=0. This means eαâ|0=|0 for any αe^{\alpha \hat{a}}|0\rangle=|0\rangle \text { for any } \alpha and eβx̂|x=0=|x=0 for any β.e^{\beta \hat{x}}| x{=}0\rangle=|x{=}0\rangle \text { for any } \beta. These relations ane very important. Always look for such annihilation relations in your work!
This then leads to a potential strategy to simplify the matrix element that gives the wavefunction. We need to convert eαp̂e^{\alpha \hat{p}} into some kind of eαx̂e^{\alpha^{\prime} \hat{x}}. Recalling that p̂ââ\hat{p} \propto \hat{a}-\hat{a}^{\dagger} and x̂â+â\hat{x} \propto \hat{a}+\hat{a}^{\dagger} tells us we should try the following:
1.) split up eip̂=eαâeαâ×e^{i \hat{p}}=e^{-\alpha \hat{a}^{\dagger}} e^{\alpha \hat{a}} \times correction terms
2.) move eαâe^{\alpha \hat{a}} to the right until it disappears when it hits |0|0\rangle
3.) replace it by eαâ|0=|0e^{-\alpha \hat{a}} |0\rangle=|0\rangle
4.) move to the left until next to eαae^{-\alpha a^{\dagger}}
5.) bring into the same exponent ec(â+â)×e^{-c(\hat{a}+\hat{a}^{\dagger}) }\times correction terms
6.) operate onto x=0|\langle x{=}0| where x=0|ec(â+â)=x=0|.\langle x{=}0| e^{-c(\hat{a}+\hat{a}^{\dagger})} =\langle x{=}0|.
This will get rid of the full exponential form. Then we need to determine how to deal with the rest of the expression. To do that we work again with the same facts â|0=0x=0|x̂=0\hat{a}|0\rangle=0 \quad\langle x{=}0| \hat{x}=0 and use them to simplify until we get the final wavefunction.
Now, we go through the technical details carefully. Recall eixp̂=exp[xmω02(âa)]=exp[xmω02(âÂ+âB̂)].\begin{aligned} \text { Recall } e^{\frac{i x \hat{p}}{\hbar}} & =\exp \left[x \sqrt{\frac{m \omega_{0}}{2 \hbar}}\left(\hat{a}-a^{\dagger} \right)\right] \\ & =\exp \left[x\sqrt{\frac{m \omega_{0}}{2 \hbar}}\left(\underbrace{-\hat{a}^{\dagger}}_{\hat{A}}+\underbrace{\hat{a}}_{\hat{B}}\right)\right]. \\ \end{aligned}
Recall as well [â,â]=1\left[\hat{a}, \hat{a}^{\dagger}\right]=1, so use BCH eÂeB̂=eÂ+B̂+12[Â,B̂] or eÂeB̂e12[Â,B̂]=eÂ+B̂.e^{\hat{A}} e^{\hat{B}}=e^{\hat{A}+\hat{B}+\frac{1}{2}[\hat{A}, \hat{B}]} \text { or } e^{\hat{A}} e^{\hat{B}} e^{-\frac{1}{2}[\hat{A}, \hat{B}]}=e^{\hat{A}+\hat{B}}. Here, Â=xmω02âB̂=xmω02â[Â,B̂]=mw02x2\hat{A}=-x \sqrt{\frac{m \omega_{0}}{2\hbar} } \hat{a}^{\dagger} \quad \hat{B}=x \sqrt{\frac{m{\omega_{0}}}{2 \hbar}} \hat{a} \quad[\hat{A}, \hat{B}]=\frac{m w_{0}}{2 \hbar} x^{2}.
So ψn(x)=x=0|emω0x24n!exmω02âexmω02â(â)n1exmω02âexmω02â|0\psi_{n}(x)=\langle x{=}0| \frac{e^{-\frac{m \omega_{0} x^2}{4 \hbar}}}{\sqrt{n!}} e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}^{\dagger}} e^{x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}} (\hat{a}^{\dagger})^n \underbrace{1}_{ e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a} }e^{x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}} }| 0 \rangle =emω0x24n!x=0|exmω02â(exmω0x22ââexmω0x22â)nHadamardexmω0x22â|0|0=\frac{e^{-\frac{m \omega_{0} x^{2}}{4 \hbar}}}{\sqrt{n!}}\langle x=0| e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}^{\dagger}}\underbrace{\left (e^{x\sqrt{\frac{m \omega_{0} x^{2}}{2 \hbar}}\hat{a}} \hat{a}^{\dagger} e^{-x\sqrt{\frac{m \omega_{0} x^{2}}{2 \hbar}}\hat{a}} \right )^{n}}_{\text{Hadamard}} \underbrace{e^{x\sqrt{\frac{m \omega_{0} x^{2}}{2 \hbar}}\hat{a}} |0\rangle}_{|0\rangle} =emω0x24n!x=0|exmω02â1exmω02âexmω02â(â+xmω02)n|0replace with exmω02â|0=\frac{e^{-\frac{m \omega_{0} x^{2}}{4 \hbar}}}{\sqrt{n!}}\langle x{=}0| e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}^{\dagger}} \underbrace{1}_{ e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a} } e^{x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a} }}\left (\hat{a} + x\sqrt{\frac{m \omega_{0}}{2 \hbar}}\right) ^ {n} \underbrace{|0\rangle}_{\text{replace with } e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a} }|0 \rangle }
=emω0x24n!x=0|exmω02âexmω02â(exmω02ââexmω02âHadamard+xmω02)n|0=\frac{e^{-\frac{m \omega_{0} x^{2}}{4 \hbar}}}{\sqrt{n!}}\langle x=0| e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}^{\dagger}} e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a} } \left (\underbrace {e^{x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}} \hat{a}^{\dagger} e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a} }}_{\text{Hadamard}} + x\sqrt{\frac{m \omega_{0}}{2 \hbar}}\right ) ^ {n} |0\rangle
=emω0x24n!x=0|exmω02âexmω02âBCH Â=xmω02âB̂=xmω02â(â+x2mω0twice as much)n|0=\frac{e^{-\frac{m \omega_{0} x^{2}}{4 \hbar}}}{\sqrt{n!}}\langle x=0| \underbrace{e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}^{\dagger}} e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a} }}_{\text{BCH } \hat{A} = -x\sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}^{\dagger} \quad \hat{B} = -x\sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{a}} \left( \hat{a}^{\dagger} + \underbrace{x\sqrt{\frac{2 m \omega_{0}}{ \hbar}}}_{\text{twice as much}}\right) ^ {n} |0\rangle
=emω0x24n!x=0|exmω02(â+â)12mω02x2(â+x2mω0)n|0.=\frac{e^{-\frac{m \omega_{0} x^{2}}{4 \hbar}}}{\sqrt{n!}}\langle x=0| e^{-x \sqrt{\frac{m \omega_{0}}{2 \hbar}} (\hat{a} + \hat{a}^{\dagger} ) - \frac{1}{2} \frac{m \omega_{0}}{2 \hbar} x^2} \left ( \hat{a}^{\dagger} + x\sqrt{\frac{2 m \omega_{0}}{ \hbar}}\right ) ^ {n} |0\rangle.
Recall: â+â=2mω0x̂\hat{a}^{\dagger}+\hat{a}=\sqrt{\frac{2 m \omega_{0} }{\hbar}} \hat{x}
=emω0x22twice as large an exponentn!x=0|exmω0x̂(â+x2mω0)n|0.=\frac{\overbrace{e^{-\frac{m \omega_{0} x^{2}}{2 \hbar}}}^{\text{twice as large an exponent}}}{\sqrt{n!}}\langle x{=}0| e^{-x \frac{m \omega_{0}}{ \hbar} \hat{x} } \left (\hat{a}^{\dagger} + x\sqrt{\frac{2 m \omega_{0}}{ \hbar}}\right ) ^ {n} |0\rangle.
But, x̂|x=0=0x=0|exmω0x̂=x=0|\hat{x}|x{=}0\rangle=0 \Rightarrow\langle x{=}0| e^{-x \frac{m \omega_{0}}{\hbar }\hat{x}} =\langle x{=}0|, so
ψ0(x)=emω0x22n!x=0|(â+x2mω0)n|0.\boxed{ \psi_{0}(x) = \frac{e^{\frac{-m\omega_{0}x^2}{2 \hbar}}}{\sqrt{n!}} \langle x{=}0| \left (\hat{a}^{\dagger} + x \sqrt{\frac{2m\omega_{0}}{\hbar}}\right)^n | 0 \rangle }.

Lets look at n=0n=0 and n=1n=1 first: n=0ψ0(x)=e12mω0x2x=00n=1ψ1(x)=e12mω0x2x=0|(â+x2mω0)|0\begin{aligned} & n=0 \quad \boxed{\psi_{0}(x)=e^{-\frac{1}{2} \frac{m \omega_{0} x^{2}}{\hbar}}\langle x{=}0 \mid 0\rangle} \\ & n=1 \quad \psi_{1}(x)=e^{-\frac{1}{2} \frac{m \omega_{0} x^{2}}{\hbar}} \langle x{=}0 |\left (\hat{a}^{\dagger}+x \sqrt{\frac{2 m \omega_{0}}{\hbar}}\right) |0 \rangle \end{aligned} We will use “add zero” to convert the raising operator into an operator proportional to a position operator via â=â+ââ=2mω0x̂â\hat{a}^{\dagger}=\hat{a}^{\dagger}+\hat{a}-\hat{a}=\sqrt{\frac{2 m \omega _{0}}{\hbar}} \hat{x}-\hat{a}. So, we have ψ1(x)=e12mω0xx2x=0|(2mω0 gives 0on leftx̂âgives 0 on right+x2mω0)|0ψ1(x)=e12mω0x2x2mw0x=0|0.\begin{aligned} & \psi_{1}(x)=e^{-\frac{1}{2} \frac{m \omega_{0}}{x} x^{2}}\langle x{=}0|\left(\underset{\text{ gives } 0 ~\text{on left}}{\sqrt{2 m \omega_{0}}} \hat{x}-\underset{\text{gives 0 on right}}{\hat{a}}+x \sqrt{\frac{2 m \omega_{0}}{\hbar}}\right)|0\rangle \\ & \boxed{\psi_{1}(x)=e^{-\frac{1}{2} \frac{m \omega_{0} x^{2}}{\hbar}} x \sqrt{\frac{2 m w_{0}}{\hbar}}\langle x{=}0 | 0\rangle.} \end{aligned}
Define Hn(mω0x)=2nx=0|0factors need to relate to Hermite’s workx=0|(â+x2mω0)n|0H_{n}\left(\sqrt{\frac{m \omega_{0}}{\hbar}} x\right)=\frac{\sqrt{2^{n}}}{ \underbrace{\langle x{=}0|0\rangle}_{\text{factors need to relate to Hermite's work}}}\langle x{=}0|\left(\hat{a}^{\dagger}+x \sqrt{\frac{2 m \omega_{0}}{\hbar}}\right)^{n}|0\rangle. We just showed that H0=1 and H1=2mω0xH_{0}=1 \text{ and } H_1 = 2 \sqrt{\frac{m \omega_{0}}{\hbar}}x from our calculations of ψ0\psi_0 and ψ1\psi_1. We now find a recurrence relation for general nn. We first split off one factor in the matrix element to the left, and rework it as we did for the first excited state: Hn(mω0x)=2nx=0|0x=0|(â+x2mω0)(â+x2mω0)n1|0=2nx=0|0)x=0|â(â+x2mω0)n1|0+2xmω0Hn1(mω0x).\begin{aligned} & H_{n}\left(\sqrt{\frac{m \omega_{0}}{\hbar}} x\right)=\frac{\sqrt{2^{n}}}{\langle x{=}0 | 0\rangle}\langle x{=}0|\left(\hat{a}^{\dagger}+x \sqrt{\frac{2 m \omega_{0}}{\hbar}}\right)\left(\hat{a}^{\dagger}+x \sqrt{\frac{2 m \omega_{0}}{\hbar}}\right)^{n-1}|0\rangle \\ & =\frac{\sqrt{2^{n}}}{\langle x{=}0|0)}\langle x{=}0| \hat{a}^{\dagger}\left (\hat{a}^{\dagger}+x \sqrt{\frac{2 m \omega_{0}}{\hbar}}\right )^{n-1}|0\rangle +2 x \sqrt{\frac{m \omega_{0}}{\hbar}} H_{n-1}\left (\sqrt{\frac{m \omega_{0}}{\hbar}} x\right ). \end{aligned} But, x=0|â=x=0|(â)\left\langle x{=}0| \hat{a}^{\dagger}=\langle x{=}0|(-\hat{a})\right. since x=0|(â+â)prop. to x̂=0\langle x{=}0|\underbrace{\left(\hat{a}+\hat{a}^{\dagger}\right)}_{\text{prop. to } \hat{x}}=0 and â(â+x2mω0)n1|0=[â,(â+x2mω0)n1]|0 since â|0=0=(n1)(â+x2mω0)n2|0\begin{aligned} \hat{a}\left(\hat{a}^{\dagger}+x \sqrt{\frac{2 m \omega_{0}}{\hbar}}\right)^{n-1}|0\rangle& =\left[\hat{a} , \left(\hat{a}^{\dagger}+x \sqrt{\frac{2 m \omega_{0}}{\hbar}}\right)^{n-1}\right]|0\rangle \quad \text { since } \hat{a}|0\rangle=0 \\ & =(n-1)\left(\hat{a}^{\dagger}+x \sqrt{\frac{2 m \omega_{0}}{\hbar}}\right)^{n-2}|0\rangle \end{aligned} So Hn(mω0x)=2mω0xHn1(mω0x)2(n1)Hn2(mω0x)\boxed{ H_{n}\left(\sqrt{\frac{m \omega_{0} }{\hbar}} x\right)=2 \sqrt{\frac{m \omega_{0} }{\hbar} x} H_{n-1} \left(\sqrt{\frac{m \omega_{0}}{\hbar}} x\right)-2(n-1) H_{n-2}\left(\sqrt{\frac{m \omega_{0}}{\hbar}} x\right) }
This, combined with the H0H_{0} and H1H_{1} values already found are the recurrence relations for the Hermite polynominals, summarized in the following table.

nn Hn(y)H_{n}(y)
0 1
1 2y2 y
2 4y224 y^{2}-2
3 8y312y8 y^{3}-12 y
4 16y448y2+1216 y^{4}-48 y^{2}+12
5 32y5160y8+120y32 y^{5}-160 y^{8}+120 y

Note, this is the physicist’s convention. Mathematicians use a different one.
The last thing we do is normalize the wavefunction. This requires us to normalize just the ground state, because we have otherwise been working with normalized states.
+ψ02(x)=1=+emω0x2|x=0|0|2=πmω0|x=0|0|2x=0|0=(mω0π)14\begin{aligned} \int_{-\infty}^{+\infty} \psi_{0}^{2}(x)=1 & =\int_{- \infty}^{+\infty} e^{-\frac{m \omega_{0}}{\hbar} x^{2}}|\langle x{=}0 | 0\rangle|^{2} \\ & =\sqrt{\frac{\pi \hbar}{m \omega_{0}}}|\langle x{=}0 | 0\rangle|^{2} \\ \Rightarrow & ~~\boxed{ \langle x{=}0|0\rangle =\left(\frac{m \omega_{0}}{\hbar \pi}\right)^{\frac{1}{4}} } \end{aligned}

Uncertainty

Everything is done algebraically and comes from operators! No series solutions of differential equations!
We end by examining uncertainty x̂=2mω0(â+â)\quad \hat{x}=\sqrt{\frac{\hbar}{2 m \omega_{0}}}(\hat{a}+\hat{a}^{\dagger})
(Δx)n2=n|x̂2|n(n|x̂|n)2=2mω0n|(â+â)2|n2mω0(n|(â+â)|n)2=2mω01n!0|(â)n(â+â)2(â)n|02mω01(n!)2(0|(â)n(â+â) =0 since we cannot pair all â and â(â)n|0)2=2mω0n!0|(ân(â20+ââ+ââ=ââ1+(â)20)(â)n|0(Δx)n2=2mω0(2n+1)\begin{aligned} & (\Delta x)_{n}^{2}=\langle n| \hat{x}^{2}|n\rangle-(\langle n| \hat{x}|n\rangle)^{2} \\ & =\frac{\hbar}{2 m \omega_{0}}\langle n|\left(\hat{a}+\hat{a}^{\dagger}\right)^{2}|n\rangle-\frac{\hbar}{2 m \omega_{0}}\left(\langle n|\left(\hat{a}+\hat{a}^{\dagger}\right)|n\rangle\right)^{2} \\ & =\frac{\hbar}{2 m \omega_{0}} \frac{1}{n!}\langle 0|(\hat{a})^{n}\left(\hat{a}+\hat{a}^{\dagger}\right)^{2}\left(\hat{a}^{\dagger}\right)^{n}|0\rangle \\ & -\frac{\hbar}{2 m \omega_{0}} \frac{1}{(n!)^{2}}\left(\langle 0|(\hat{a})^{n}\underbrace{\left(\hat{a}+\hat{a}^{\dagger}\right)}_{\text{ =0 since we cannot pair all } \hat{a} \text{ and } \hat{a}^{\dagger}}\left(\hat{a}^{\dagger}\right)^{n}|0\rangle\right)^{2} \\ & = \frac{\hbar}{2m\omega_{0}n!} \langle 0|(\hat{a}^n (\underbrace{\hat{a}^2}_{0} + \hat{a}\hat{a}^{\dagger} + \underbrace{\hat{a}^{\dagger}\hat{a}}_{ = \hat{a}\hat{a}^{\dagger} -1} + \underbrace{(\hat{a}^{\dagger})^2}_{0})(\hat{a}^{\dagger})^n |0 \rangle\\ &\boxed{(\Delta x)^{2}_n = \frac{\hbar}{2m\omega_{0}}(2n + 1)} \end{aligned} p̂=imω02(ââ)(Δp)n2=mω02[n|(ââ)2|n(n|(ââ)|n)20] and we have n|â202ââ+(â)20|n=(2n+1)(Δp)n2=mω02(2n+1)So we find that (Δx)n(Δp)n=2(2n+1).\begin{aligned} &\hat{p}=i\sqrt{\frac{\hbar m \omega_{0}}{2}}(\hat{a} - \hat{a}^{\dagger})\\ & (\Delta p)^{2}_{n} = -\frac{\hbar m \omega_{0}}{2}[\langle n| (\hat{a} - \hat{a}^{\dagger})^2 |n \rangle - \underbrace{(\langle n | (\hat{a} - \hat{a}^{\dagger})| n \rangle)^2}_{0}]\\ & \text{ and we have } \langle n|\underbrace{\hat{a}^2}_{0} - 2\hat{a}\hat{a}^{\dagger} + \underbrace{(\hat{a}^{\dagger})^{2}}_{0}|n\rangle=-(2n+1)\\ & \boxed{(\Delta p)^{2}_{n} = \frac{\hbar m \omega_{0}}{2} (2n + 1)}\\ \text{So we find that } & \boxed{(\Delta x )_n(\Delta p)_n = \frac{\hbar}{2} (2n + 1)}. \end{aligned}
The uncertainty is minimal for the ground state but grows with nn.