The jellium model consists of free electrons interacting with a
uniform background positive charge and with themselves.
The Hamiltonian, in a plane-wave basis, is \[\hat{H}_{\text{Jellium}}=\sum_{k\sigma}\frac{\hbar^2k^2}{2m}c_{k\sigma}^\dagger
c_{k\sigma}^{\phantom{\dagger}}+\frac{4\pi
e^2}{2V}\sum_{kk'\sigma\sigma', \ q\ne
0}\frac{1}{q^2}c_{k+q\sigma}^\dagger c_{k'-q\sigma'}^\dagger
c_{k'\sigma'}^{\phantom{\dagger}}c_{k\sigma}^{\phantom{\dagger}}\]
\[V(q)=\begin{cases}\frac{4\pi e^2}{2Vq^2}
& q\ne0 \\ 0 & q=0.\end{cases}\] The potential vanishes
when \(q=0\) due to the cancellation by
the uniform positive background.
Study first with the variational principle. Consider \[E_{\text{trial}}=\frac{\left\langle\psi\middle|\hat{H}\middle|\psi\right\rangle}{\left\langle\psi\middle|\psi\right\rangle}\]
We always have \(E_{\text{trial}}\ge
E_{gs}\).
Proof: Start with \(\left|\psi\right\rangle=\sum_nc_n\left|n\right\rangle\)
where \(\hat{H}\left|n\right\rangle=E_n\left|n\right\rangle\)
\[E_{\text{trial}}=\frac{\sum_n|c_n|^2E_n}{\sum_n|c_n|^2}\ge\frac{\sum_n|c_n|^2E_0}{\sum_n|c_n|^2}\]
For our trial state, we will look at a single Slater determinant. Define
\[\alpha_{p\sigma}^\dagger=\sum_la_l^pc_{l\sigma}^\dagger\]
and let \[\left|\psi\right\rangle=\prod_{p,\sigma}\alpha_{p\sigma}^\dagger\left|0\right\rangle\]
Note that \[\{\alpha_{p\sigma}^\dagger,\alpha_{p'\sigma'}^{\phantom{\dagger}}\}=\sum_{ll'}a_l^pa_{l'}^{p'*}\{c_{l\sigma}^\dagger,c_{l'\sigma'}^{\phantom{\dagger}}\}=\sum_la_l^pa_{l}^{p'*}\delta_{\sigma\sigma'}\]
If we choose the \(a_l^p\) vectors to
be an orthonormal set, then \[\sum_la_l^pa_l^{p'*}=\delta_{pp'}\]
so \(\{\alpha_{p\sigma}^\dagger,\alpha_{p'\sigma'}^{\phantom{\dagger}}\}=\delta_{pp'}\).
Next, define a set of vectors \(b_l^p\)
such that \[\sum_pb_l^pa_{l'}^p=\delta_{ll'}\]
Then, \[\sum_pb_l^p\alpha_{p\sigma}^\dagger=\sum_p\sum_{l'}b_l^pa_{l'}^pc_{l'\sigma}^\dagger=c_{l\sigma}^\dagger.\]
So, we can now compute averages. \[\begin{aligned}
\left\langle\psi\middle|c_{l\sigma}^\dagger
c_{l\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle=& \
\sum_{pp'}b_l^pb_l^{p'*}\left\langle\psi\middle|\alpha_{p\sigma}^\dagger\alpha_{p'\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle
\\
=& \
\sum_{pp'}b_l^pb_l^{p'*}\delta_{pp'}\delta(p,\sigma\in\psi)
\\
=& \ \sum_p|b_l^p|^2\delta(p,\sigma\in\psi)
\end{aligned}\] and \[\begin{aligned}
\left\langle\psi\middle|c_{l_1\sigma}^\dagger
c_{l_2\sigma'}^\dagger
c_{l_3\sigma'}^{\phantom{\dagger}}c_{l_4\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle=&
\
\sum_{p_1p_2p_3p_4}b_{l_1}^{p_1}b_{l_2}^{p_2}b_{l_3}^{p_3*}b_{l_4}^{p_4*}\left\langle\psi\middle|\alpha_{p_1\sigma}^\dagger\alpha_{p_2\sigma'}^\dagger\alpha_{p_3\sigma'}^{\phantom{\dagger}}\alpha_{p_4\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle
\\
=& \
\sum_{p_1p_2p_3p_4}b_{l_1}^{p_1}b_{l_2}^{p_2}b_{l_3}^{p_3*}b_{l_4}^{p_4*}\left[\delta_{p_1p_4}\delta_{p_2p_3}\left\langle\psi\middle|\alpha_{p_1\sigma}^\dag\alpha_{p_2\sigma'}^\dag\alpha_{p_2\sigma'}^{\phantom{\dagger}}\alpha_{p_1\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle
\right.\\ &\left.
+\delta_{p_1p_3}\delta_{p_2p_4}\delta_{\sigma\sigma}\left\langle\psi\middle|\alpha_{p_1\sigma}^\dag\alpha_{p_2\sigma}^\dag\alpha_{p_2\sigma}^{\phantom{\dagger}}\alpha_{p_1\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle\right]
\end{aligned}\] Note when \(p_1=p_2\) and \(\sigma=\sigma'\) we get zero in both
cases since \(\alpha_{p\sigma}^2=0\).
So, we can assume \(p_1\ne p_2\). \[\begin{gathered}
=\sum_{p_1p_2p_3p_4}b_{l_1}^{p_1}b_{l_2}^{p_2}b_{l_3}^{p_3*}b_{l_4}^{p_4*}\left[\delta_{p_1p_4}\delta_{p_2p_3}\left\langle\psi\middle|\alpha_{p_1\sigma}^\dag\alpha_{p_1\sigma}^{\phantom{\dagger}}\alpha_{p_2\sigma'}^\dag\alpha_{p_2\sigma'}^{\phantom{\dagger}}\middle|\psi\right\rangle
\right. \\ \left.
-\delta_{p_1p_3}\delta_{p_2p_4}\delta_{\sigma\sigma}\left\langle\psi\middle|\alpha_{p_1\sigma}^\dag\alpha_{p_1\sigma}^{\phantom{\dagger}}\alpha_{p_2\sigma}^\dag\alpha_{p_2\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle\right]
\end{gathered}\] Since in this expression, the term with \(p_1=p_2=p_3=p_4\) and \(\sigma=\sigma'\) cancels from both
terms, we do not need to worry about the restriction \(p_1\ne p_2\) anymore since the total terms
vanish when \(p_1=p_2\). \[=\sum_{p_1}b_{l_1}^{p_1}b_{l_4}^{p_1*}\delta(p_1\sigma\in\psi)\sum_{p_2}b_{l_2}^{p_2}b_{l_3}^{p_2*}\delta(p_2{\sigma'}\in\psi)-\sum_{p_1}b_{l_1}^{p_1}b_{l_3}^{p_1*}\delta(p_1\sigma\in\psi)\sum_{p_2}b_{l_2}^{p_2}b_{l_2}^{p_2*}\delta(p_2{\sigma'}\in\psi)\]
Note that we have just shown \[\left\langle\psi\middle|c_{l_1\sigma}^\dag
c_{l_2\sigma'}^\dag
c_{l_3\sigma'}^{\phantom{\dagger}}c_{l_4\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle=\left\langle\psi\middle|c_{l_1\sigma}^\dag
c_{l_4\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle\left\langle\psi\middle|c_{l_2\sigma'}^\dag
c_{l_3\sigma'}^{\phantom{\dagger}}\middle|\psi\right\rangle-\left\langle\psi\middle|c_{l_1\sigma}^\dag
c_{l_3\sigma'}^{\phantom{\dagger}}\middle|\psi\right\rangle\left\langle\psi\middle|c_{l_2\sigma'}^\dag
c_{l_4\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle\]
which is called Wick’s theorem – replace averages of products
of operators by products of averages of pairs of operators. Holds only
for noninteracting particles/Slater determinants.
Now we choose the \(a_k^p\) values.
Suppose we take \[\left|\psi_{trial}\right\rangle=\prod_{k,\sigma}c_{k\sigma}^\dag\left|0\right\rangle\]
\[\hat{H}=\sum_{k\sigma}\frac{\hbar^2k^2}{2m}c_{k\sigma}^\dag
c_{k\sigma}^{\phantom{\dagger}}+\frac{1}{2}\sum_{kk'\sigma\sigma',q\ne
0}\frac{4\pi e^2}{Vq^2}c_{k+q\sigma}^\dag c_{k'-q\sigma'}^\dag
c_{k'\sigma'}^{\phantom{\dagger}}c_{k\sigma}^{\phantom{\dagger}}\]
so \[\left\langle\psi\middle|c_{k+q\sigma}^\dag
c_{k'-q\sigma'}^\dag
c_{k'\sigma'}^{\phantom{\dagger}}c_{k\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle=\left\langle\psi\middle|c_{k+q\sigma}^\dag
c_{k\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle\left\langle\psi\middle|c_{k'-q\sigma'}^\dag
c_{k'\sigma'}^{\phantom{\dagger}}\middle|\psi\right\rangle-\left\langle\psi\middle|c_{k+q\sigma}^\dag
c_{k'\sigma'}^{\phantom{\dagger}}\middle|\psi\right\rangle\left\langle\psi\middle|c_{k'-q\sigma'}^\dag
c_{k\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle\] The
first term vanishes unless \(q=0\). But
when \(q=0\), \(V(q)=0\) so we neglect those terms for
jellium. The second requires \(k'=k+q\), \(\sigma=\sigma'\), or \(q=k'-k\). So we find \[\left\langle\psi\middle|H\middle|\psi\right\rangle\sum_{k\sigma}\frac{\hbar^2k^2}{2m}\left\langle\psi\middle|c_{k\sigma}^\dag
c_{k\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle-\sum_{k\ne
k',\sigma}\frac{4\pi
e^2}{|k'-k|^2V}\left\langle\psi\middle|c_{k'\sigma}^\dag
c_{k'\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle\left\langle\psi\middle|c_{k\sigma}^\dag
c_{k\sigma}^{\phantom{\dagger}}\middle|\psi\right\rangle\] Since
\(\frac{\hbar^2k^2}{2m}\) is an
increasing function of \(k\), we
minimize the kinetic energy by filling the lowest \(k\) levels first. This is called the
“bathtub principle”. We use the state with minimum kinetic energy to
estimate the ground state energy of jellium.
If we have \(N\) particles the density is \(N/V\). Then we get \[\sum_{k<k_F,\sigma}1=N\implies 2\frac{V}{(2\pi)^3}\int_0^{k_F}4\pi k^2 \ dk=N\] So, \[n=\frac{N}{V}=\frac{2}{2\pi^2}\int_0^{k_F}k^2dk=\frac{k_F^3}{3\pi^2}\implies k_F=(3\pi^2n)^{1/3}\] The kinetic energy becomes \[2\sum_{k<k_F}\frac{\hbar^2k^2}{2m}=\frac{2V}{(2\pi)^3}4\pi\frac{\hbar^2}{2m}\int_0^{k_F}k^4 \ dk=\frac{\hbar^2}{2m}\frac{k_F^5}{5\pi^2}V=V\frac{(3\pi^2n)^{5/3}}{5\pi^2}\frac{\hbar^2}{2m}\] The potential energy term becomes \[-\frac{1}{2}2\frac{V^2}{(2\pi)^6}\int_{k<k_F}d^3k\int_{k'<k_F}\frac{4\pi e^2}{V|k'-k|^2}\] Do the \(k'\) integration first. Choose \(z\)-axis along \(\mathbf{k}\) direction. \[|\mathbf{k}'-\mathbf{k}|^2=k'^2-\mathbf{k}'\cdot\mathbf{k}+k^2=k'^2-2k'k\cos{\theta'}+k^2\] \[\begin{aligned} \int_0^{k_F}k'^2dk'\int_{-1}^1d\cos{\theta'}\int_0^{2\pi}d\phi'\frac{1}{k^2-2kk'\cos{\theta'}+k'^2}=& \ 2\pi\int_0^{k_F}k'^2dk'\left(-\frac{1}{2kk'}\right)\ln(k^2-2kk'\cos{\theta}+k'^2)\biggr\rvert_{-1}^1\\=& \ -\frac{\pi}{k}\int_0^{k_F}k'dk'\ln\left(\frac{k^2-2kk'+k'^2}{k^2+2kk'+k'^2}\right) \\ =& \ \frac{2\pi}{k}\int_0^{k_F}dk'k'\ln\left \vert\frac{k+k'}{k-k'}\right\vert \\ =& \ 2\pi\left(\frac{k_F^2-k^2}{2k}\ln\left\vert\frac{k_F+k}{k_F-k}\right\vert+k_F\right) \end{aligned}\] Now do the \(k\) integral. \[=\frac{V^2}{(2\pi)^6}\frac{4\pi e^2}{V}\cdot2\pi\cdot4\pi\int_0^{k_F}dk\left(\frac{1}{2}(kk_F^2-k^3)\ln\left\vert\frac{k_F+k}{k_F-k}\right\vert+k^2k_F\right)=\frac{Ve^2}{2\pi^3}\frac{k_F^4}{2}.\] So \[\frac{E_{trial}}{V}=\frac{\hbar^2}{2m}\frac{k_F^5}{5}-\frac{e^2}{4\pi^3}k_F^4\] Recall \(n=\frac{k_F^3}{3\pi^2}\). Express energy in Rydbergs\(=e^2/2a_0\). \[E_N=\frac{E}{Vk_F^3/3\pi^2}=\frac{e^2}{2a_0}\left(\frac{3\hbar^2k_F^2a_0}{5me^2}-\frac{3k_Fa_0}{2\pi}\right).\] Define \(r_s=r/a_0\) where \(r\) is the radius of a sphere with a single electron. \[4\pi r^3=\frac{1}{n}, \ r=\left(\frac{3}{4\pi n}\right)^{1/3}\] \[r_s=\left(\frac{3}{4\pi n}\right)^{1/3}\frac{1}{a_0}=\left(\frac{9\pi}{4}\right)^{1/3}\frac{1}{k_Fa_0}\] \[\frac{E}{N}=\frac{e^2}{2a_0}\left(\frac{3}{5}(k_Fa_0)^2-\frac{3}{2\pi}(k_Fa_0)\right)=\left(\frac{2.210}{r_S^2}-\frac{0.916}{r_S}\right)\text{ Ry}.\]