Phys 506 lecture 38: Hubbard model

Original Mott picture

Consider a collection of H atoms. As we bring the atoms together they will solidify into a solid lattice (ignoring any molecular bonding effects for the moment).
 
When in a solid form, the 1s electrons spread into an energy band and there is one electron per lattice site.
 
This can be described by a tight-binding model for the 1s electrons, which allows electrons to “hop” between nearest neighbors. \[\hat{T}=-t\sum_{\langle ij\rangle\sigma}(c_{i\sigma}^\dagger c_{j\sigma}^{\phantom{\dagger}}+c_{j\sigma}^\dagger c_{i\sigma}^{\phantom{\dagger}})\] where \(\langle ij\rangle\) counts nearest neighbors once. Because the electrons are negatively charged, we also expect Coulomb repulsion. But because the electrons are mobile, and can screen each other out, we approximate the repulsion by an on-site \(U\) only: \[\hat{U}=U\sum_in_{i\uparrow}n_{i\downarrow}.\] The Hubbard model is the sum of these two terms \[\boxed{\hat{H}_{\text{Hubbard}}=-t\sum_{\langle ij\rangle\sigma}(c_{i\sigma}^\dagger c_{j\sigma}^{\phantom{\dagger}}+c_{j\sigma}^\dagger c_{i\sigma}^{\phantom{\dagger}})+U\sum_in_{i\uparrow}n_{i\downarrow}.}\]

Momentum-space Hamiltonian

Let’s examine \(\hat{H}\) in momentum space (Bloch basis). Define: \[\begin{aligned} a_{k\sigma}^\dagger=& \ \frac{1}{\sqrt{V}}\sum_je^{ik\cdot r_j}c_{j\sigma}^\dagger \\ a_{k\sigma}^{\phantom{\dagger}}=& \ \frac{1}{\sqrt{V}}\sum_je^{-ik\cdot r_j}c_{j\sigma}^{\phantom{\dagger}} \end{aligned}\] where \(V\) is the number of lattice sites. Then, \[\begin{aligned} c_{j\sigma}^\dagger=& \ \frac{1}{\sqrt{V}}\sum_{k}e^{-ik\cdot r_j}a_{k\sigma}^\dagger \\ c_{j\sigma}^{\phantom{\dagger}}=& \ \frac{1}{\sqrt{V}}\sum_{k}e^{ik\cdot r_j}a_{k\sigma}^{\phantom{\dagger}}, \end{aligned}\] which we can plug into the Hubbard Hamiltonian. \[\begin{aligned} \hat{H}&=-t\sum_{\langle ij\rangle\sigma}\frac{1}{V}\sum_{kk'}\left(e^{-ik\cdot r_i+ik'\cdot r_j}a_{k\sigma}^\dagger a_{k'\sigma}^{\phantom{\dagger}}+e^{ik\cdot r_i-ik'\cdot r_j}a_{k'\sigma}^\dagger a_{k\sigma}^{\phantom{\dagger}}\right)\\&+U\sum_i\frac{1}{V^2}\sum_{k_1,k_2,k_3,k_4}e^{-i(k_1-k_2)\cdot r_i-i(k_3-k_4)\cdot r_i}a_{k_1\uparrow}^\dagger a_{k_2\uparrow}^{\phantom{\dagger}}a_{k_3\downarrow}^\dagger a_{k_4\downarrow}^{\phantom{\dagger}}. \end{aligned}\] Note that for nearest neighbor pairs \(r_j=r_i+\delta\) with \(\delta\) being the nearest neighbor translation vector. So, \[\begin{aligned} \frac{1}{V}\sum_{\langle ij\rangle}e^{-ik\cdot r_i+ik'\cdot r_j}=& \ \frac{1}{V}\frac{1}{2}\sum_i\sum_\delta e^{-i(k-k')\cdot r_i+ik'\cdot\delta} \\ =& \ \frac{1}{2}\sum_\delta e^{ik\cdot\delta}\delta_{kk'}. \end{aligned}\] So the first term (kinetic energy) becomes \(\sum_{k\sigma}=\varepsilon_ka_{k\sigma}^\dagger a_{k\sigma}^{\phantom{\dagger}}\) with \[\varepsilon_k=-t\frac{1}{2}\sum_\delta(e^{ik\cdot\delta}+e^{-ik\cdot\delta})=-t\sum_\delta\cos(k\cdot\delta)\] and the second term becomes \[\frac{U}{V}\sum_{kk'q}a_{k+q\uparrow}^\dagger a_{k\uparrow}^{\phantom{\dagger}}a_{k'-q\downarrow}^\dagger a_{k'\downarrow}^{\phantom{\dagger}}.\] So we find that the Hubbard Hamiltonian takes the following form in momentum space: \[\hat{H}=\sum_{k\sigma}=\varepsilon_ka_{k\sigma}^\dagger a_{k\sigma}^{\phantom{\dagger}}+\frac{U}{V}\sum_{kk'q}a_{k+q\uparrow}^\dagger a_{k\uparrow}^{\phantom{\dagger}}a_{k'-q\downarrow}^\dagger a_{k'\downarrow}^{\phantom{\dagger}}.\] Note that in real space the first term is complicated but the second term is diagonal, while the opposite occurs in momentum space. The key problem is to find the eigenvalues and properties of the ground state for arbitrary \(U\) values.

Symmetries of the Hubbard model

Suppose the lattice is bipartite \(\implies\) \(t_{ij}\ne 0\) only if \(i\in A\) and \(j\in B\) or \(i\in B\) and \(j\in A\) (never \(AA\) or \(BB\)). Some examples with nearest neighbor hopping:

Then, \(t\rightarrow -t\) is a symmetry. Proof: Define \((c_{i\sigma}')^\dagger=(-1)^{\varepsilon(i)}c_{i\sigma}^\dagger\) and \(c_{i\sigma}'=(-1)^{\varepsilon(i)}c_{i\sigma}^{\phantom{\dagger}}\) with \(\varepsilon(i)=1\) when \(i\in A\) and \(0\) when \(i\in B\). Then, \[\hat{H}=t\sum_{\langle ij\rangle \sigma}((c_{i\sigma}')^\dagger c_{j\sigma}'(c_{j\sigma}')^\dagger c_{i\sigma}')+U\sum_in_{i\uparrow}'n_{i\downarrow}'\] since \(c_{i\sigma}^\dagger c_{j\sigma}=-(c_{i\sigma}')^\dagger c_{j\sigma}'\) when \(i\) and \(j\) are on different sublattices. Therefore, the eigenvalues are symmetric with respect to \(t\rightarrow -t\).
 
The Hubbard model also has partial particle-hole symmetry. Let \[d_{i\uparrow}^\dagger=c_{i\uparrow}(-1)^{\varepsilon(i)}, \quad d_{i\uparrow}=c_{i\uparrow}^\dagger(-1)^\varepsilon(i)\] \[d_{i\downarrow}^\dagger=c_{i\downarrow}^\dagger, \quad d_{i\downarrow}=c_{i\downarrow}\] Then, \[c_{i\uparrow}^\dagger c_{j\uparrow}=d_{i\uparrow}d_{j\uparrow}^\dagger(-1)^{\varepsilon(i)+\varepsilon(j)}=-d_{i\uparrow}d_{j\uparrow}^\dagger=d_{j\uparrow}^\dagger d_{i\uparrow}\] So, \[c_{i\uparrow}^\dagger c_{j\uparrow}+c_{j\uparrow}^\dagger c_{i\uparrow}=d_{i\uparrow}^\dagger d_{j\uparrow}+d_{j\uparrow}^\dagger d_{i\uparrow}\] and \[n_{i\uparrow}\rightarrow d_{i\uparrow}d_{i\uparrow}^\dagger=-d_{i\uparrow}^\dagger d_{i\uparrow}+1\implies N_\uparrow=V-N_\uparrow\] So, \[\hat{H}\rightarrow-t\sum_{\langle ij\rangle\sigma}(d_{i\sigma}^\dagger d_{j\sigma}+d_{j\sigma}^\dagger d_{i\sigma})-U\sum_{i}d_{i\uparrow}^\dagger d_{i\uparrow}d_{i\downarrow}^\dagger d_{i\downarrow}+U\sum_id_{i\downarrow}^\dagger d_{i\downarrow}\] \[\implies E(U,N_\uparrow,\downarrow)=E(-U,V-N_\uparrow,N_\downarrow)+UN_\downarrow\] If \(N_\uparrow=N_\downarrow=\frac{V}{2}\) (half-filling case), then \[\boxed{E(U,V/2,V/2)=E(-U,V/2,V/2)+\frac{UV}{2}}\] Therefore, up to a constant, energies are symmetric for \(U\rightarrow-U\) at half-filling. Let’s look at spin next. \[\left[\hat{H},\sum_kn_{k\sigma'}\right]=-t\sum_{\langle ij\rangle\sigma}[c_{i\sigma}^\dagger c_{j\sigma}^{\phantom{\dagger}}+c_{j\sigma}^\dagger c_{i\sigma}^{\phantom{\dagger}},n_{k\sigma'}]\] and since \([n_{k\sigma},n_{k'\sigma'}]=0\) \[\begin{aligned} =& \ -t\sum_{\langle ij\rangle}\sum_k\left(\delta_{ik}(-c_{i\sigma'}^\dagger c_{j\sigma'}^{\phantom{\dagger}}+c_{j\sigma'}^\dagger c_{i\sigma'}^{\phantom{\dagger}})+\delta_{jk}(c_{i\sigma'}^\dagger c_{j\sigma'}^{\phantom{\dagger}}-c_{j\sigma'}^\dagger c_{i\sigma}^{\phantom{\dagger}})\right) \\ =& \ -t\sum_{\langle ij\rangle}(-c_{i\sigma'}^\dagger c_{j\sigma'}^{\phantom{\dagger}}+c_{j\sigma'}^\dagger c_{i\sigma'}^{\phantom{\dagger}}+c_{i\sigma'}^\dagger c_{j\sigma'}^{\phantom{\dagger}}-c_{j\sigma'}^\dagger c_{i\sigma'}^{\phantom{\dagger}}) \\ =& \ 0. \end{aligned}\] So \(\hat{S}_z=\frac{1}{2}\sum_i(n_{i\uparrow}-n_{i\downarrow})\) and \(\hat{N}=\sum_i(n_{i\uparrow}+n_{i\downarrow})\) both commute with \(\hat{H}\). Hence, we can have simultaneous eigenstates with definite \(S_z\) and \(N\). \[\left[H,\sum_kc_{k\uparrow}^\dagger c_{k\downarrow}^{\phantom{\dagger}}\right]=-t\sum_{<ij>\sigma}\sum_k[c_{i\sigma}^\dagger c_{j\sigma}^{\phantom{\dagger}}+c_{j\sigma}^\dagger c_{i\sigma}^{\phantom{\dagger}},c_{k\uparrow}^\dagger c_{k\downarrow}^{\phantom{\dagger}}]+U\sum_i\sum_k[n_{i\uparrow}n_{i\downarrow},c_{k\uparrow}^\dagger c_{k\downarrow}]\] but \([c_{i\sigma}^\dagger c_{j\sigma}^{\phantom{\dagger}}+c_{j\sigma}^\dagger c_{i\sigma}^{\phantom{\dagger}}, c_{k\uparrow}^\dagger c_{k\downarrow}^{\phantom{\dagger}}]=\delta_{ik}(c_{j\uparrow}^\dagger c_{i\downarrow}^{\phantom{\dagger}}-c_{i\uparrow}^\dagger c_{j\downarrow})^{\phantom{\dagger}}+\delta_{jk}(c_{i\uparrow}^\dagger c_{j\downarrow}^{\phantom{\dagger}}-c_{j\uparrow}^\dagger c_{i\downarrow}^{\phantom{\dagger}}).\) When summed over \(\langle ij\rangle\), this vanishes. Then, \[\begin{aligned} [n_{i\uparrow}n_{i\downarrow},c_{k\uparrow}^\dagger c_{k\downarrow}^{\phantom{\dagger}}]=& \ n_{i\uparrow}[n_{i\downarrow}, c_{k\uparrow}^\dagger c_{k\downarrow}^{\phantom{\dagger}}]+[n_{i\uparrow},c_{k\uparrow}^\dagger c_{k\downarrow}^{\phantom{\dagger}}]n_{i\downarrow} \\ =& \ -n_{i\uparrow}c_{i\uparrow}^\dagger c_{i\downarrow}^{\phantom{\dagger}}\delta_{ik}+c_{i\uparrow}^\dagger c_{i\downarrow}^{\phantom{\dagger}}\delta_{ik} \\ =& \ 0. \end{aligned}\] This means that \([\hat{H},\hat{S}^+]=[\hat{H},\hat{S}^-]=0\) so \(S^2\) and \(S_z\) are good quantum numbers.
 
Now, look at pseudospin. We already showed that \([\hat{H},\hat{J}_z]=0\) where \(\hat{J}_z=\frac{1}{2}(\hat{N}-V)\). Define: \[\begin{aligned} \hat{J}^+=& \ \sum_ic_{i\uparrow}^\dagger c_{i\downarrow}^\dagger(-1)^{\varepsilon(i)} \ \text{(pair creation operator)} \\ \hat{J}^-=& \ \sum_ic_{i\downarrow}^{\phantom{\dagger}}c_{i\uparrow}^{\phantom{\dagger}}(-1)^{\varepsilon(i)} \ \text{(pair destruction operator)} \end{aligned}\] \[\begin{aligned} [\hat{T},\hat{J}^+]=& \ -t\sum_{\langle ij\rangle \sigma}\sum_k[c_{i\sigma}^\dagger c_{j\sigma}^{\phantom{\dagger}}+c_{j\sigma}^\dagger c_{i\sigma}^{\phantom{\dagger}},c_{k\sigma}^\dagger c_{k\downarrow}^\dagger (-1)^{\varepsilon(k)}] \\ =& \ -t\sum_{<ij>}\sum_k\left(\delta_{ik}(c_{j\uparrow}^\dagger c_{k\downarrow}^\dagger(-1)^{\varepsilon(k)}-c_{j\downarrow}^\dagger c_{k\uparrow}^\dagger(-1)^{\varepsilon(k)})+\delta_{jk}(c_{i\uparrow}^\dagger c_{k\downarrow}^{\phantom{\dagger}}(-1)^{\varepsilon(k)}-c_{i\downarrow}^\dagger c_{k\uparrow}^\dagger(-1)^{\varepsilon(k)})\right) \\ =& \ -t\sum_{\langle ij\rangle}(c_{j\uparrow}^\dagger c_{i\downarrow}^\dagger-c_{j\downarrow}^\dagger c_{i\uparrow}^\dagger)(-1)^{\varepsilon(i)}+(c_{i\uparrow}^\dagger c_{j\downarrow}^\dagger-c_{i\downarrow}^\dagger c_{j\uparrow}^\dagger)(-1)^{\varepsilon(j)} \\ =& \ 0 \end{aligned}\] and \[\begin{aligned} [\hat{U},\hat{J}^+]=& \ U\sum_{ij}[n_{i\uparrow}n_{i\downarrow},c_{j\uparrow}^\dagger c_{j\downarrow}^\dagger(-1)^{\varepsilon(j)}] \\ =& \ U\sum_{ij}\delta_{ij}\left(c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger n_{i\downarrow}(-1)^{\varepsilon(i)}+n_{i\uparrow}c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger(-1)^{\varepsilon(i)}\right) \\ =& \ U\sum_i(c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger c_{i\downarrow}^\dagger c_{i\downarrow}^{\phantom{\dagger}}(-1)^{\varepsilon(i)}+c_{i\uparrow}^\dagger c_{i\uparrow}^{\phantom{\dagger}}c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger(-1)^{\varepsilon(i)}) \\ =& \ UJ^+. \end{aligned}\] So \([\hat{H},\hat{J}^+]=U\hat{J}^+\). Therefore, \(\hat{J}^+\) is a raising operator for \(\hat{H}\) and \(j,m_j\) are good quantum numbers. One can also show that \[\begin{aligned} &[J^z,J^\pm]=\pm J^\pm \\ &[J^+,J^-]=2J^z, \end{aligned}\] which means that \(\hat{J}\) acts like an angular momentum operator just like \(\hat{S}\) does. Also, \[E(m_j)=E(-j)+(m_j+J)U\] You will examine this on the homework and also see in the next lecture. \(m_j\) governs the number of particles as \(m_j\) increases by 1, the number of particles increases by 2 as we have added a pair with \(J^+\).

Limiting cases

When \(U=0\), use the momentum space representation and bath tub principle to fill in the noninteracting levels (always a metal).
 
When \(U\rightarrow\infty\), use the real space representation. There is no double occupancy and at half-filling there is one electron per site which are frozen and cannot move (insulator). So we will have a metal-insulator phase transition as a function of \(U\).
 
For \(d=1\), \(U_{mit}=0^+\) and for \(d\rightarrow\infty\), \(U_{mit}\approx\) bandwidth.