Phys 506 lecture 41: Antiferromagnetism

Introduction

Recall the general Hubbard Hamiltonian \[H=\sum_{xy\sigma}t_{xy}\hat{c}_{x\sigma}^\dagger \hat{c}_{y\sigma}^{\phantom{\dagger}}+\sum_xU_x\hat{n}_{x\uparrow}\hat{n}_{x\downarrow}\] where \(x\in\Lambda\) where \(\Lambda\) is a collection of points, like lattice sites. Then \(|\Lambda|\) is the number of points in \(\Lambda\) (what we used to call \(N\)). Note that \(U_x\) can now depend on the lattice site.
 
Further note that \(t_{xy}=t_{yx}\) are elements of a real hopping matrix which is also connected. This means that there is a path of bonds \(t_{xy}\ne 0\) between any two points in \(\Lambda\).
 

Attractive case

Theorem 1: (Attractive Case) Assume \(U_x\le 0\) for all \(x\in\Lambda\) and \(M\) is an even number of electrons. Then, the ground state includes one with \(s=0\). If \(U_x<0\) for all \(x\in\Lambda\), then the ground state is unique.
 
Some comments: Note, as \(U\rightarrow 0\) this is true, since we have discrete levels from the band structure \(\epsilon(k)\) and we fill with \(\uparrow\downarrow\) in each level. We only have degeneracies with higher spins states if the band structure has degeneracies at the Fermi level.
 
As \(U\rightarrow-\infty\) it is true since the ground state is constructed out of the bound \(\uparrow\downarrow\) states on each site which are lowest in energy.
 
Proof: Since \(S^2\) and \(S^z\) are conserved, we can work in the \(S^z=0\) subspace with \(N_\uparrow=N_\downarrow=\frac{M}{2}\). Then, let \(\{\psi_\alpha\}\) be basis functions for \(n\) spinless electrons. There are \(\begin{pmatrix}|\Lambda| \\ n\end{pmatrix}=m\) such basis functions. We choose these basis functions to all be real.
 
The ground state \(\left|\psi\right\rangle\) can be written as \[\left|\psi\right\rangle=\sum_{\alpha\beta}W_{\alpha\beta} \ \psi_\uparrow^\alpha\otimes\psi_\downarrow^\beta\] where \(W\) is an \(m\times m\) matrix. Without loss of generality, we can say \(W\) is Hermitian so that \(W_{\alpha\beta}=W_{\beta\alpha}^*\). \[\begin{aligned} \left\langle\psi\middle|\psi\right\rangle=& \ \sum_{\alpha\beta\gamma\delta}(\psi_\uparrow^\alpha\otimes\psi_\downarrow^\beta)^\dagger \ W_{\alpha\beta}^*W_{\gamma\delta} \ (\psi_\uparrow^\gamma\otimes\psi_\downarrow^\delta) \\ =& \ \sum_{\alpha\beta}|W_{\alpha\beta}|^2=\sum_{\alpha\beta}W_{\alpha\beta}W_{\beta\alpha}=\text{Tr}(W^2) \end{aligned}\] where we made use of orthonormality of the basis functions and the Hermiticity of \(W\). Then, \[\begin{aligned} \left\langle\psi\middle|\hat{T}\middle|\psi\right\rangle=& \ \sum_{\alpha\beta\gamma\delta}W_{\alpha\beta}^*(\psi_\uparrow^\alpha\otimes\psi_\downarrow^\beta)^\dagger\sum_{xy}t_{xy}(\hat{c}_{x\uparrow}^\dagger \hat{c}_{y\uparrow}^{\phantom{\dagger}}+\hat{c}_{x\downarrow}^\dagger \hat{c}_{y\downarrow}^{\phantom{\dagger}})W_{\gamma\delta}(\psi_\uparrow^\alpha\otimes\psi_\downarrow^\beta) \\ =& \ \sum_{\alpha\beta\gamma\delta}\left(W_{\alpha\beta}^*\left\langle\psi_\uparrow^\alpha\middle|\sum_{xy}t_{xy}\hat{c}_{x\uparrow}^\dagger \hat{c}_{y\uparrow}^{\phantom{\dagger}}\middle|\psi_\uparrow^\gamma\right\rangle W_{\gamma\delta}\delta_{\beta\delta}+W_{\alpha\beta}^*\left\langle\psi_\downarrow^\beta\middle|\sum_{xy}t_{xy}\hat{c}_{x\downarrow}^\dagger \hat{c}_{y\downarrow}^{\phantom{\dagger}}\middle|\psi_\downarrow^\delta\right\rangle W_{\gamma\delta}\delta_{\alpha\gamma}\right) \end{aligned}\] Define: \[K_{\alpha\beta}=\left\langle\psi^\alpha\middle|\sum_{xy}t_{xy}\hat{c}_x^\dagger \hat{c}_y^{\phantom{\dagger}}\middle|\psi^\beta\right\rangle\] Then, \[\begin{aligned} \left\langle\psi\middle|\hat{T}\middle|\psi\right\rangle=& \ \sum_{\alpha\beta\gamma}\left(W_{\alpha\beta}^*K_{\alpha\gamma}W_{\gamma\beta}+W_{\alpha\beta}^*K_{\beta\gamma}W_{\alpha\gamma}\right) \\ =& \ \text{Tr}(KW^2)+\text{Tr}(W^2K^T)=2\text{Tr}(KW^2) \end{aligned}\] since \(K^T=K^\dagger\) and \(W^2K^\dagger=(KW^{\dagger2})=(KW^2)^\dagger\). We can also calculate \[\begin{aligned} \left\langle\psi\middle|\hat{{U}}\middle|\psi\right\rangle=& \ \sum_xU_x\sum_{\alpha\beta\gamma\delta}(\psi_\uparrow^\alpha\otimes\psi_\downarrow^\beta)^\dagger W_{\alpha\beta}^*\hat{n}_{x\uparrow}\hat{n}_{x\downarrow}(\psi_\uparrow^\gamma\otimes\psi_\downarrow^\delta)W_{\gamma\delta} \\ =& \ \sum_xU_x\sum_{\alpha\beta\gamma\delta}W_{\alpha\beta}^*\left\langle\psi_\uparrow^\alpha\middle|\hat{n}_{x\uparrow}\middle|\psi_\uparrow^\gamma\right\rangle\left\langle\psi_\downarrow^\beta\middle|\hat{n}_{x\downarrow}\middle|\psi_\downarrow^\delta\right\rangle W_{\gamma\delta}. \end{aligned}\] Define \((L_x)_{\alpha\beta}=\left\langle\psi^\alpha\middle|\hat{n}_x\middle|\psi^\beta\right\rangle\). Note \((L_x)_{\alpha\beta}=(L_x)_{\beta\alpha}\) since all \(\psi\)’s are real. \[\begin{aligned} \left\langle\psi\middle|\hat{{U}}\middle|\psi\right\rangle=& \ \sum_xU_x\sum_{\alpha\beta\gamma\delta}W_{\alpha\beta}^*(L_x)_{\alpha\gamma}W_{\gamma\delta}(L_x)_{\beta\delta} \\ =& \ \sum_xU_x\sum_{\alpha\beta\gamma\delta}W_{\beta\alpha}(L_x)_{\alpha\gamma}W_{\gamma\delta}(L_x)_{\delta\beta} \\ =& \ \sum_xU_x \ \text{Tr}(WL_xWL_x). \end{aligned}\] So \(E(W)=\left\langle\psi\middle|H\middle|\psi\right\rangle=2\text{Tr}(KW^2)+\sum_xU_x \ \text{Tr}(WL_xWL_x)\) when \(\text{Tr}(W^2)=1\). Now consider a positive semidefinite matrix \(|W|\) where \(|W|=\sqrt{W^2}\), which is determined by diagonalizing \(W\) and forming \[|W|=\begin{pmatrix}|w_1| & 0 & 0 & \\ 0 & |w_2| & 0 & \\ 0 & 0 & |w_3| & \\ & & & \ \ddots \end{pmatrix}.\] In general, \(|W|\ne|W_{\alpha\beta}|\). That holds only in the basis where \(|W|\) is diagonal. Let’s examine \(E(W)\) in the diagonal basis. Obviously \(\text{Tr}(KW^2)=\text{Tr}(K|W|^2)\) and \[\begin{aligned} \text{Tr}(WL_xWL_x)=& \ \sum_{ij}W_iW_j(L_x)_{ij}(L_x)_{ji} \\ =& \ \sum_{ij}W_iW_j|(L_x)_{ij}|^2\le \sum_{ij}|W_i||W_j||(L_x)_{ij}|^2 \\ \le& \ \text{Tr}(|W|L_x|W|L_x). \end{aligned}\] Since \(U_x\le 0\), we have \(E(|W|)\le E(W)\). Among all ground states, there is one with \(W=|W|\). Note that normalization says \[\text{Tr}(W^2)=\sum_{i=1}^\infty W_i^2=1\implies \text{Tr}|W|=\sum_i|w|_{i}\ne 0,\] so we work in coordinate representation for \(\psi_\alpha\) \[\psi_\alpha=\hat{c}_{x1}^\dagger \hat{c}_{x2}^\dagger\cdots\left|0\right\rangle.\] Then \(\text{Tr}(W)=\sum_\alpha W_{\alpha\alpha}\ne 0\). Therefore, the vector \(\psi_\uparrow^\alpha\otimes\psi_\downarrow^\alpha\) is in the ground state expansion. But \(S=0\) for this state so the ground state has a spin singlet state.
 
The proof of uniqueness is straightforward, but we don’t have enough time to do so here.
 

Proof in the repulsive case

Theorem 2: Assume \(U_x=U>0\) is independent of \(x\). Assume \(|\Lambda|\) is even \(\Lambda\) is bipartite. Let \(M=|\Lambda|=\) half-filled band. Then \(S=\frac{1}{2}(|B|-|A|)=0\) (for most bipartite lattices)
 
Proof: Need to do the partial particle-hole transformation which changes \(U\mapsto -U\), \(N_\uparrow\mapsto|\Lambda|-N_\uparrow\), \(N_\downarrow\mapsto N_\downarrow\). This gives us \(N_\uparrow+N_\downarrow=|\Lambda|\implies|\Lambda|-N_\uparrow+N_\downarrow=|\Lambda|\implies N_\uparrow=N_\downarrow\) but the ground state for the attractive case with \(N_\uparrow=N_\downarrow\) has \(S=0\) and is unique by theorem 1. Hence \(J=0\) is the unique ground state for the repulsive case.
 
Consider the case of a very large \(U\). No double occupancy is allowed. Then, at \(U=\infty\) all spin configurations are degenerate. But what about finite, but large \(U\)?
 
The singlet state is shifted down in energy proportional to \(t^2/U\). In general, we find that the Hamiltonian for large \(U\) maps onto \[\hat{H}(U\to\infty)\to\frac{2}{U}\sum_{xy}t_{xy}^2\left(\mathbf{S}_x\cdot\mathbf{S}_y-\frac{1}{4}\right)\] for large \(U\) at half filling. The ground state of this Hamiltonian is known to have \(S=\frac{1}{2}(|B|-|A|)\) and since the ground state is nondegenerate, \(S\) cannot change.
 
\[\implies S=\frac{1}{2}(|B|-|A|)\] at half-filling for the Hubbard model!