Phys 506 lecture 5: Squeezed States

The harmonic oscillator is an interesting system particularly because it has a close relationship with photons, which we will explore later. As we saw when we looked at a coherent state, it had the same Δx\Delta x and Δp\Delta p of the minimal uncertainty ground state. Can we do better?
Well, we certainly cannot reduce the product of Δx\Delta x and Δp\Delta p, but we can trade off the uncertainty—for example, if I find a state where Δx\Delta x is multiplied by ere^{-r} and Δp\Delta p by er(r is real)e^{r} (r \text{ is real}), then we can reduce the uncertainty in xx at the expense of raising it for pp when r0r \geq 0. But if we want to measure xx then this may be advantageous. At the very least, it looks like by changing rr from -\infty to ++\infty, we could continuously change from momentum eigenstates to position eigenstates, just by changing a parameter. That would be cool. (Indeed, it does work).
Another exciting thing is working with coherent states gives us more to exercise with our 5 operator identities. Practice makes perfect!

Squeezed states

The operator for squeezing can be thought of as a generalization of the displacement operator from being a linear function of â\hat{a} and â\hat{a}^{\dagger} to a quadratic one.

We use Ŝ(ξ,η)=exp[ξ2(â)2+in2(ââ+ââ)+ξ*2â2]\hat{S}(\xi, \eta)=\exp \left[-\frac{\xi}{2} (\hat{a}^{\dagger})^{2}+\frac{i n}{2}\left(\hat{a}^{\dagger}\hat{a} + \hat{a} \hat{a}^{\dagger}\right)+\frac{\xi^{*}}{2} \hat{a}^{2}\right]
where ξ\xi can be complex, but η\eta is always real. Why the odd looking choices of parameters? We want Ŝ\hat{S} to be unitary. But (Ŝ(ξ,η))=exp[ξ*2â2iη2(ââ+ââ)+ξ2(â)2]=Ŝ(ξ,η)=exp[(ξ2(â)2+iη2(ââ+ââ)+ξ*2â2)].\begin{aligned} & (\hat{S}(\xi, \eta))^{\dagger}=\exp \left[-\frac{\xi^{*}}{2} \hat{a}^{2}-\frac{i\eta}{2}\left(\hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}^{\dagger}\right)+\frac{\xi}{2}(\hat{a}^{\dagger})^{2}\right] \\ & =\hat{S}(-\xi,-\eta)=\exp \left[-\left(-\frac{\xi}{2} (\hat{a}^{\dagger})^{2}+\frac{i \eta}{2}\left(\hat{a}^{\dagger} \hat{a}+\hat{a}\hat{a}^{\dagger}\right)+\frac{\xi^*}{2} \hat{a}^{2}\right)\right]. \end{aligned} Now, we recall exp(Â)exp(Â)=1\exp (\hat{A}) \exp (-\hat{A})=1, for any operator Â\hat{A}. Hence (Ŝ(ξ,η))=(Ŝ(ξ,η))1.(\hat{S}(\xi, \eta))^{\dagger}=(\hat{S}(\xi, \eta))^{-1}. That implies Ŝ\hat{S} is unitary!

Since Ŝ\hat{S} has a quadratic in the exponent, it is like we are controlling the kinetic energy and the potential energy. For example, if we make the potential more confining and narrow, the wave function should be squeezed closer to the origin. This is a way to think about the procedure.

Squeezed operators

Let’s think of Ŝ(ξ,η)\hat{S}(\xi, \eta) as being a unitary transformation. Then all operators are transformed like ÔÛÔÛ\hat{O} \rightarrow \hat{U}^{\dagger} \hat{O} \hat{U} or

âŜ(ξ,η)âŜ(ξ,η)=Ŝ(ξ,η)âŜ(ξ,η)Hadamard! \hat{a} \rightarrow \hat{S}^{\dagger}(\xi, \eta) \hat{a} \hat{S}(\xi, \eta)=\underbrace{\hat{S}(-\xi, -\eta) \hat{a} \hat{S}(\xi, \eta)}_{\text {Hadamard! }}

So ââ[(ξ2(â)2+iη2(ââ+ââ)+ξ*2â2),â]\quad \hat{a} \rightarrow \hat{a}-[(-\frac{\xi}{2} (\hat{a}^{\dagger})^2+\frac{i \eta}{2}\left(\hat{a}^{\dagger}\hat{a}+\hat{a} \hat{a}^{\dagger}\right)+\frac{\xi^{*}}{2} \hat{a}^{2}), \hat{a}]
$$+\frac{1}{2}[(-\frac{\xi}{2}(\hat{a}^{\dagger})^{2}+\frac{i \eta}{2}(\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger}) + \frac{\xi^{*}}{2}\hat{a}^{2}),[(-\frac{\xi}{2}(\hat{a}^{\dagger})^{2}+\frac{i \eta}{2}(\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger}) + \frac{\xi^{*}}{2}\hat{a}^{2}),\hat{a}]]\\ +\cdots$$ =â(ξâiηâ)+12(ξ(ξ*â+iηâ)iη(ξâiηâ))+=â(ξâiηâ)+12(|ξ|2η2)â+\begin{aligned} =\hat{a}- (\xi \hat{a}^{\dagger} - i \eta \hat{a})+\frac{1}{2}(\xi(\xi^{*}\hat{a} + i \eta \hat{a}^{\dagger}) - i \eta (\xi\hat{a}^{\dagger} - i \eta \hat{a})) +\cdots\\ =\hat{a}- (\xi \hat{a}^{\dagger} - i \eta \hat{a})+\frac{1}{2}(|\xi|^{2}-\eta^{2}) \hat{a}+\cdots \end{aligned} since the â\hat{a}^{\dagger} term vanishes. This actually allows us to perform the infinite sum.
ââ(1+12(|ξ|2η2)+14!|ξ|2η2)2+)(ξâiηâ)(1+13!(|ξ|2η2)+15!(|ξ|2η2)2+).\begin{aligned} \hat{a} \rightarrow \hat{a} & \left(1+\frac{1}{2}\left(|\xi|^{2}-\eta^{2}\right)+\frac{1}{4!}|\xi|^{2}-\left.\eta^{2}\right)^{2}+\cdots\right) \\ & -\left(\xi \hat{a}^{\dagger}-i \eta \hat{a}\right)\left(1+\frac{1}{3!}\left(|\xi|^{2}-\eta^{2}\right)+\frac{1}{5!}\left(|\xi|^{2}-\eta^{2}\right)^{2}+\cdots\right). \end{aligned}

Now use the hyperbolic trig functions coshy=m=0y2m(2m)!andsinhy=m=0y2m+1(2m+1)!,ââcosh|ξ|2η2(ηâiηâ)|ξ|2η2sinh|ξ|)2η2\begin{aligned} & \cosh y=\sum_{m=0}^{\infty} \frac{y^{2 m}}{(2 m)!} \quad \text{and}\quad\sinh y=\sum_{m=0}^{\infty} \frac{y^{2 m+1}}{(2 m +1)!}, \\ & \hat{a} \rightarrow \hat{a} \cosh \sqrt{|\xi|^{2}-\eta^{2}}-\frac{\left(\eta \hat{a}^{\dagger}-i \eta \hat{a}\right)}{\sqrt{|\xi|^{2}-\eta^{2}}} \sinh \sqrt{|\xi|)^{2}-\eta^{2}} \\ \end{aligned} Hence Ŝ(ξ,η)âŜ(ξ,η)=â[cosh|ξ|2η2+iη|ξ|2η2sinh|ξ|2η2]âξ|ξ|2η2sinh|ξ|2η2\boxed{ \begin{aligned} \hat{S}^{\dagger}(\xi, \eta) \hat{a} \hat{S}(\xi, \eta) & =\hat{a}\left[\cosh \sqrt{|\xi|^{2}-\eta^{2}}+\frac{i \eta}{\sqrt{ |\xi|^{2}-\eta^{2}}} \sinh \sqrt{|\xi|^{2}-\eta^{2}}\right] \\ & -\hat{a}^{\dagger} \frac{\xi}{\sqrt{|\xi|^{2}-\eta^{2}}} \sinh \sqrt{|\xi|^{2}-\eta^{2}} \end{aligned} }

Taking the Hermitian conjugate gives us Ŝ(ξ,η)âŜ(ξ,η)=âξ*|ξ|2η2sinh|ξ|2η2+â[cosh|ξ|2η2iη*|ξ|2η2sinh|ξ|2η2]\boxed{ \begin{aligned} \hat{S}^{\dagger}(\xi, \eta) \hat{a}^{\dagger} \hat{S}(\xi, \eta)= & -\hat{a} \frac{\xi^{*}}{\sqrt{|\xi|^{2}-\eta^{2}}} \sinh \sqrt{|\xi|^{2}-\eta^{2}} \\ & +\hat{a}^{\dagger}\left[\cosh \sqrt{|\xi|^{2}-\eta^{2}}-\frac{i \eta^{*}}{\sqrt{|\xi|^{2} -\eta^{2}}} \sinh \sqrt{|\xi|^{2}-\eta^{2}}\right] \end{aligned} }

You may want to look back at what we derived for similar expressions with Pauli matrices. These relations resemble those, but are not identical.

Squeezed states and uncertainty

We define Ŝ(ξ,η)|0=|ξ,η=\hat{S}(\xi, \eta)|0\rangle=|\xi, \eta\rangle= "squeezed vacuum state".
Then ξ,η|x̂|ξ,η=2mω00|Ŝ(ξ,η)(â+â)Ŝ(ξ,η)|0\langle \xi, \eta| \hat{x}|\xi, \eta\rangle=\sqrt{\frac{\hbar}{2 m \omega_{0}}}\langle 0| \hat{S}^{\dagger}(\xi, \eta)\left(\hat{a}+\hat{a}^{\dagger}\right) \hat{S}(\xi, \eta)|0\rangle
Let κ=cosh(ξ)2η2+iη|ξ|2η2sinh|ξ|2η2λ=ξ(ξ)2η2sinh|ξ|2η2\boxed{ \kappa=\cosh \sqrt{(\xi)^{2}-\eta^{2}}+\frac{i \eta}{\sqrt{|\xi|^{2}-\eta^{2}}} \sinh \sqrt{|\xi|^{2}-\eta^{2}}\quad \lambda=\frac{\xi}{\sqrt{(\xi)^{2} \eta^{2}}} \sinh \sqrt{|\xi|^{2}-\eta^{2}}} Then ŜâŜ=κâλâandŜâŜ=λ*â+κ*â\hat{S}^{\dagger} \hat{a} \hat{S}=\kappa \hat{a}-\lambda \hat{a}^{\dagger} \quad \text{and}\quad\hat{S} \hat{a}^{\dagger} \hat{S}=-\lambda^{*} \hat{a}+\kappa^{*} \hat{a}^{\dagger}. So ξη|x̂|ξη=2mω00|(κâλâλ*â+κ*â)|0=0, since â|0=0 and 0|â=0.ξη|x̂2|ξη=2mω00|((κλ*)2â2+(κλ*)(κ*λ)ââ+(κ*λ)(κλ*)ââ+(κ*λ)2(a)2)|0=2mω0(κλ*)(κ*λ)=2mω0(|κ|22Reκλ+|λ|2)ξη|p̂|ξη)=mω020|(κâλâ+λ*âκ*â)|0=0ξη|p̂2|ξη=mω020|((κ+λ*)2â2(κ+λ*)(κ*+λ)(âa+ââ)+(κ*+λ)2(â)2)|0=mω02(κ+λ*)(κ*+λ)=mω02(|κ|2+2Reκλ+|λ|2)\begin{aligned} &\langle\xi \eta| \hat{x}|\xi \eta\rangle=\sqrt{\frac{\hbar}{2 m \omega_{0}}}\langle 0|(\kappa \hat{a}-\lambda \hat{a}^{\dagger}-\lambda^{*} \hat{a}+\kappa^{*} \hat{a}^{\dagger})| 0\rangle=0, \\ &\text { since } \hat{a}|0\rangle=0 \text { and }\langle 0| \hat{a}^{\dagger}=0. \\ & \langle \xi \eta| \hat{x}^{2} | \xi \eta\rangle=\frac{\hbar}{2 m \omega_{0}}\langle 0|\big( (\kappa-\lambda^{*})^{2} \hat{a}^{2}+(\kappa-\lambda^{*})(\kappa^{*} -\lambda) \hat{a} \hat{a}^{\dagger} \\ & +(\kappa^{*}-\lambda)(\kappa-\lambda^{*}) \hat{a} \hat{a}^{\dagger}+(\kappa^{*}-\lambda)^{2} (a^{\dagger})^{2}\big)|0\rangle \\ & =\frac{\hbar}{2 m \omega_{0}}(\kappa - \lambda^{*})(\kappa^{*}-\lambda)=\frac{\hbar}{2 m \omega_{0}}(|\kappa|^{2}-2 \operatorname{Re} \kappa \lambda+| \lambda|^{2}) \\ & \langle \xi \eta| \hat{p} | \xi \eta)=\sqrt{\frac{\hbar m \omega_{0}}{2}} \langle 0| \big(\kappa \hat{a}-\lambda \hat{a}^{\dagger}+\lambda^{*} \hat{a}-\kappa^{*} \hat{a}^{\dagger}\big)|0\rangle =0\\ & \langle\xi \eta| \hat{p}^{2}|\xi \eta\rangle=-\frac{\hbar m \omega_{0}}{2} \langle 0 |\big((\kappa+\lambda^{*})^{2} \hat{a}^{2}-(\kappa+\lambda^{*})(\kappa^{*}+\lambda)(\hat{a} a^{\dagger}+\hat{a}^{\dagger}\hat{a}) \\ & +(\kappa^{*}+\lambda)^{2} (\hat{a}^{\dagger})^{2}\big)|0\rangle \\ & =\frac{\hbar m \omega_{0}}{2}(\kappa+\lambda^{*})(\kappa^{*}+\lambda)=\frac{\hbar m \omega_{0}}{2}(|\kappa|^{2}+2 \operatorname{Re} \kappa \lambda +|\lambda|^{2}) \end{aligned} Examine for a special case of η=0,ξ=reiϕ\eta=0, \quad \xi=r e^{i \phi}. Then κ=coshrandλ=sinhreiϕ\kappa=\cosh r \quad \text{and}\quad\lambda=\sinh r e^{i \phi}, so

(Δx)reiϕ,02=2mω0(cosh2r2coshrsinhrcosϕ+sinh2r)=2mω0(cosh2rsinh2rcosϕ)(Δp)reiϕ,02=mω02(cosh2r+sinh2rcosϕ).\begin{aligned} (\Delta x)_{re^{ i \phi}, 0}^{2} & =\frac{\hbar}{2 m \omega_{0}}\left(\cosh ^{2} r-2 \cosh r \sinh r \cos \phi+\sinh ^{2} r\right)\\ & =\frac{\hbar}{2 m \omega_{0}}(\cosh 2 r-\sinh 2 r \cos \phi) \\ (\Delta p)^{2}_{re^{i\phi},0} & =\frac{\hbar m \omega_{0}}{2}(\cosh 2 r+\sinh 2 r \cos \phi). \end{aligned}

Let ϕ=0\phi=0, then cosh2r+sinh2r=e2randcosh2rsinh2r=e2r\begin{aligned} \cosh 2 r+\sinh 2 r & =e^{2 r}\quad\text{and}\quad \cosh 2 r-\sinh 2 r & =e^{-2 r} \end{aligned} and Δx\Delta x is squeezed by ere^{-r} while Δp\Delta p is expanded by ere^{r}.

Change ϕπ\phi \rightarrow \pi and it is reversed!
The product of the uncertainties are unchanged, but we have a trade off from xx to pp and vice versa.
You will explore this more thoroughly on the homework.

Expanding squeezed states in terms of energy eigenstates

The last topic we will cover is how to determine the squeezed states themselves. To do this, we need to recall the work from HW #1\# 1 on the symplectic group. We saw that [K̂0,K̂±]=±K̂±and [K̂+,K̂]=2K̂0.\left[\hat{K}_{0}, \hat{K}_{\pm}\right]= \pm \hat{K}_{ \pm} ~\text {and }~\left[\hat{K}_{+}, \hat{K}_{-}\right]=-2 \hat{K}_{0}.
Here, we claim K̂+=12(â)2,K̂=12â2\hat{K}_{+}=\frac{1}{2} (\hat{a}^{\dagger})^{2}, \quad \hat{K}_{-}=\frac{1}{2} \hat{a}^{2}, and K0̂=14(ââ+ââ)\hat{K_{0}}=\frac{1}{4}(\hat{a}^{\dagger}\hat{a}+\hat{a} \hat{a}^{\dagger}).
Check:

[K̂+,K̂]=14[(â)2,â2]=14[â[â,â2]+[â,â2]â)=14(â(â[â,â]+[â,â)â)+(â[â,â]+[â,â]â)â)=12(ââ+ââ)[K̂0,k̂+]=[14[ââ+ââ),12(â)2]=18(â[â,(â)2]+[â,(â)2]â)=18(2ââ+2ââ)=12(â)2[K̂0,K̂]=[14(ââ+ââ,12â2]=12â2\begin{aligned} \left[\hat{K}_{+},\hat{K}_{-}\right] & =\frac{1}{4}\left[(\hat{a}^{\dagger})^{2}, \hat{a}^{2}\right] \\ & =\frac{1}{4}\left[\hat{a}^{\dagger}\left[\hat{a}^{\dagger}, \hat{a}^{2}\right]+\left[\hat{a}^{\dagger}, \hat{a}^{2}\right] \hat{a}^{\dagger}\right) \\ & =\frac{1}{4}\left(\hat{a}^{\dagger}\left(\hat{a}\left[\hat{a}^{\dagger}, \hat{a}\right]+\left[\hat{a}^{\dagger}, \hat{a}\right) \hat{a}\right)+\right. \left.\left(\hat{a}\left[\hat{a}^{\dagger}, \hat{a}\right]+\left[\hat{a}^{\dagger}, \hat{a}\right] \hat{a}\right) \hat{a}^{\dagger}\right) \\ & =-\frac{1}{2}\left(\hat{a}^{\dagger}\hat{a}+\hat{a} \hat{a}^{\dagger}\right) \checkmark \\ \left[\hat{K}_{0}, \hat{k}_{+}\right] & =\left[\frac{1}{4}\left[\hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}^{\dagger}\right), \frac{1}{2} (\hat{a}^{\dagger})^{2}\right] =\frac{1}{8}\left(\hat{a}^{\dagger}\left[\hat{a}, (\hat{a}^{\dagger})^{2}\right]+\left[\hat{a}, (\hat{a}^{\dagger})^{2}\right] \hat{a}^{\dagger}\right) \\ & =\frac{1}{8}\left(2 \hat{a}^{\dagger} \hat{a}^{\dagger}+2 \hat{a}^{\dagger} \hat{a}^{\dagger}\right)=\frac{1}{2} (\hat{a}^{\dagger})^{2} \checkmark \\ \left[\hat{K}_{0}, \hat{K}_{-}\right] & =\left[\frac{1}{4}\left(\hat{a}^{\dagger}\hat{a}+\hat{a} \hat{a}^{\dagger}, \frac{1}{2} \hat{a}^{2}\right]=-\frac{1}{2} \hat{a}^{2} \checkmark\right. \end{aligned}

So we can immediately use the result from the exponential disentangling identity for the symplectic group exp[ξK̂++2iηK̂0+ξ*K̂]=eλκ*K̂+e2lnκ*K̂0eλ*κ*K̂\begin{aligned} & \exp \left[-\xi \hat{K}_{+}+2 i \eta \hat{K}_{0}+\xi^{*} \hat{K}_{-}\right] =e^{-\frac{\lambda}{\kappa^{*}} \hat{K}_{+}} e^{-2 \ln \kappa^{*} \hat{K}_{0}} e^{\frac{\lambda^{*}}{\kappa^{*}} \hat{K}_{-}} \end{aligned} So, for us, we have Ŝ(ξ,η)=eλ2kx(â)2e2lnκ*14(ââ+ââ)eλ2κ*â2\hat{S}(\xi, \eta)=e^{-\frac{\lambda}{2 k x} (\hat{a}^{\dagger})^{2}} e^{-2\ln \kappa^{*} \frac{1}{4}(\hat{a}^{\dagger} \hat{a} + \hat{a}\hat{a}^{\dagger})} e^{\frac{\lambda}{2\kappa^{*}} \hat{a}^{2}}

then the squeezed vacuum (for the special case ξ=reiϕ,η=0,κ=coshr,andλ=eiϕsinhr\xi=r e^{i \phi}, \quad \eta=0, \quad \kappa = \cosh r, \quad \text{and}\quad\lambda=e^{i \phi} \sinh r) becomes S(reiϕ,0)|0=eeiϕ2tanhr(â)2e24ln(coshr)(ââ+ââ)eeiϕ2tanh(â)2goes to 1|0(ââ+ââ)|0=1|0=|0S(reiϕ,0)|0=1coshrexp(12eiϕtanhr(â)2)\begin{aligned} & S\left(r e^{i \phi}, 0\right)|0\rangle=e^{-\frac{e^{i \phi}}{2} \tanh r\left(\hat{a}^{\dagger}\right) ^2} e^{-\frac{2}{4} \ln (\cosh r)\left(\hat{a}^{\dagger}\hat{a}+\hat{a} \hat{a}^{\dagger}\right)} \underbrace{e^{\frac{e^{i \phi}}{2} \tanh (\hat{a})^{2} } }_{\text{goes to 1}}|0\rangle \\ & \left.\left.\left(\hat{a}^{\dagger} \hat{a}+\hat{a}\hat{a}^{\dagger}\right) |0\rangle=1 \cdot |0\right\rangle=|0\right\rangle \\ & \boxed{ S\left(r e^{i \phi}, 0\right) |0\rangle=\frac{1}{\sqrt{\cosh r}} \exp \big(-\tfrac{1}{2} e^{i \phi } \tanh r (\hat{a}^{\dagger})^{2}\big)} \end{aligned}

Hence, the normalized squeezed vacuum is S(reiϕ,0)|0=1coshrm=0(12eiϕtanhr)m(2m)!m!|2m\boxed{ S(re^{i \phi},0)|0\rangle =\frac{1}{\sqrt{\cosh r}} \sum_{m=0}^{\infty}\left(-\frac{1}{2} e^{i \phi} \tanh r\right)^{m} \frac{\sqrt{(2 m)!}}{m!}|2 m\rangle }

One can also look at the displaced squeezed state (note one can squeeze then displace or vice versa): D̂(α)Ŝ(ξ,η)|0\hat{D}(\alpha) \hat{S}(\xi, \eta)|0\rangle or Ŝ(ξ,n)D̂(α)|0.\hat{S}\left(\xi^{\prime}, n^{\prime}\right) \hat{D}(\alpha^{\prime})|0\rangle. These states are NOT, in general, equal to each other, but we can find the mapping ξξηη and αα\xi \rightarrow \xi^{\prime} \quad \eta \rightarrow \eta^{\prime} \text { and } \alpha \rightarrow \alpha^{\prime} that corresponds to the same state. It is likely to be messy.

Note finally that time dependence of these states is simple due to braiding, so eiĤtŜ(ξ,η)|0=eiω0t2Ŝ(ξeαiωt,η)|0.e^{-i \frac{\hat{H} t}{\hbar}} \hat{S}(\xi, \eta)|0\rangle=e^{-i \frac{\omega_{0} t}{2}} \hat{S}\left(\xi e^{-\alpha i \omega t}, \eta\right)|0\rangle. We have ξ\xi changes periodically with time, but η\eta does not, because [Ĥ,ââ]=[Ĥ,ââ]=0[\hat{H}, \hat{a}^{\dagger}\hat{a}]=[\hat{H}, \hat{a} \hat{a}^{\dagger}]=0. So those operators are constants of the motion. This implies η\eta remains constant!
One interesting question is how do we create coherent and squeezed states? In general, it is not so simple. For light, we will find all classical sources of light are coherent states. Squeezing light takes a fair amount of work involving nonlinear optics. This is true about other systems as well. One has to work with a strategy to make such states. It is not so simple (of course the same is true for energy eigenstates \cdots).
We can also squeeze and displace excited states, but that ends up not being very useful.
The squeezed vacuum plays an important role in improving the accuracy of LIGO, as we will see when we discuss it later in the class. It can make a significant improvement in the accuracy of the measurements.