Phys 506 lecture 6: Schrodinger factorization method

We know that in quantum mechanics only a handful of problems can be exactly solved. In 1940, Schrodinger described a general approach for such problems that was algebraic. It generalized the operator method for the simple harmonic oscillator to all of those other exactly solvable problems. In the next few lectures, we will explore this method and how to apply it to these different systems. It is a truly different way to solve these problems. But there is one caveat. At this stage, we do not how to generalize it to solve any problem (using a computer). I view this as an exciting new opportunity in a field where we thought we already knew everything! This comment is with regards to performing the factorization directly. There is a way to do it numerically that also employs the conventional Schrödinger differential equation.

Introduction to the factorization method

It is easiest to jump into the method, which will seem quite abstract at first, and then make it more concrete as we discover how to solve some problems. The approach we give now is somewhat formulaic at first. We will derive some other methodologies that will appear less so. The strategy is to write Ĥ=Ĥ0\hat{H}=\hat{H}_{0} in a factorized form

Ĥ0=Â0Â0+E0.\hat{H}_{0}=\hat{A}_{0}^{\dagger} \hat{A}_{0}^{\phantom{\dagger}}+E_{0}. Here, Â\hat{A} and Â\hat{A}^\dagger are operators that are Hermitian conjugates of each other. EE is a number with dimensions of energy. Since Â0Â0\hat{A}_{0}^{\dagger} \hat{A}_{0} is a positive semidefinite operator, we know that the ground state satisfies Â0|ϕ0=0\hat{A}_{0}\left|\phi_{0}\right\rangle=0 and E0E_{0} is its energy (just like what we did with the SHO). But now, we devise a set of new "auxiliary" Hamiltonians Ĥj\hat{H}_{j} and auxiliary ground states |ϕj\left|\phi_{j}\right\rangle via the following procedure Ĥ1=Â1Â1+E1Ĥj=ÂjÂj+Ej\hat{H}_{1}=\hat{A}_{1}^{\dagger} \hat{A}_{1}^{\phantom{\dagger}}+E_{1} \quad \cdots \quad \hat{H}_{j}=\hat{A}_{j}^{\dagger} \hat{A}_{j}^{\phantom{\dagger}}+E_{j} with Âj|ϕj=0andĤj|ϕj=Ej|ϕj\hat{A}_{j}^{\phantom{\dagger}}\left|\phi_{j}\right\rangle=0 \quad \text{and}\quad\hat{H}_{j}\left|\phi_{j}\right\rangle=E_{j}\left|\phi_{j}\right\rangle At this point, this seems the an exercise in futility, but we connect the auxiliary Hamiltonians via the additional requirement that Ĥj=Âj1Âj1+Ej1\hat{H}_{j}=\hat{A}_{j-1}^{\phantom{\dagger}} \hat{A}_{j-1}^{\dagger}+E_{j-1} So the chain is constructed as follows: Ĥ=Ĥ0=Â0Â0+E0Ĥ1=Â0Â0+E0Â1Â1+E1Ĥ2=Â1Â1+E1Â2Â2+E2\begin{aligned} & \hat{H}=\hat{H}_{0}=\hat{A}_{0}^{\dagger} \hat{A}_{0}^{\phantom{\dagger}}+E_{0} \\ & \hat{H}_{1}=\hat{A}_{0}^{\phantom{\dagger}} \hat{A}_{0}^{\dagger}+E_{0} \Rightarrow \hat{A}_{1}^{\dagger} \hat{A}_{1}^{\phantom{\dagger}}+E_{1} \\ & \hat{H}_{2}=\hat{A}_{1}^{\phantom{\dagger}} \hat{A}_{1}^{\dagger}+E_{1} \Rightarrow \hat{A}_{2}^{\dagger} \hat{A}_{2}^{\phantom{\dagger}}+E_{2} \end{aligned} and so on. We also require that Ej+1>EjE_{j+1}>E_{j}. This may sound odd, but it forbids us from choosing E1=E0andÂ1=Â0E_{1}=E_{0} \quad\text{and}\quad\hat{A}_{1}^{\dagger}=\hat{A}_{0}, because that is always a choice we could make. It also tells us we must have Ej>Ej1>>E2>E1E_{j}>E_{j-1}>\cdots>E_{2}>E_{1} for this method to work—the energy levels must be nondegenerate. This is a well-known consequence of the node theorem in one dimension, but arises naturally here.

Now, our situation is quite complex, for not only do we need to find a way to factorize our original Ĥ\hat{H}, once we have Â0\hat{A}_{0}, we next determine a new auxiliary Hamiltonian from Ĥ1=Â0Â0+E0=Ĥ0+[Â0,Â0]\hat{H}_{1}=\hat{A}_{0}^{\phantom{\dagger}} \hat{A}_{0}^{\dagger}+E_{0}=\hat{H}_{0}+\left[\hat{A}_{0}^{\phantom{\dagger}}, \hat{A}_{0}^{\dagger}\right]. Since this is usually a different potential than in Ĥ0\hat{H}_0, we need to find a way to factorize H1H_{1} too.

This is a problem that is hard in general. But it turns out we can find a strategy to do this for all of the exactly solvable problems. It turns out all exactly solvable problems have the same form for the ladder operators—they only differ in the numerical constants in them—this allows us to do these factorizations easily. For the moment just assume we can do this. Let’s investigate some consequences.

Consequences of the factorization method

Assume |ψ|\psi\rangle is an eigenstate of Ĥ\hat{H} with eigenvalue EE. Hence, Ĥ|ψ=E|ψ\hat{H}|\psi\rangle=E|\psi\rangle. Our first step is to work out the intertwining identity: Ĥj+1Âj=ÂjĤj\hat{H}_{j+1} \hat{A}_{j}^{\phantom{\dagger}}=\hat{A}_{j}^{\phantom{\dagger}} \hat{H}_{j} for the auxiliary Hamiltonians.
Proof:

Ĥj+1Âj=(Âj+1Âj+1+Ej+1)Âj=(ÂjÂj+Ej)Âj=ÂjÂjÂj+ÂjEj=Âj(ÂjÂj+Ej)=ÂjĤj.\begin{aligned} \hat{H}_{j+1} \hat{A}_{j}^{\phantom{\dagger}} & =\left(\hat{A}_{j+1}^{\dagger} \hat{A}_{j+1}^{\phantom{\dagger}}+E_{j+1}\right) \hat{A}_{j}^{\phantom{\dagger}}=\left(\hat{A}_{j}^{\phantom{\dagger}} \hat{A}_{j}^{\dagger}+E_{j}\right) \hat{A}_{j}^{\phantom{\dagger}} \\ & =\hat{A}_{j}^{\phantom{\dagger}} \hat{A}_{j}^{\dagger} \hat{A}_{j}^{\phantom{\dagger}}+\hat{A}_{j}^{\phantom{\dagger}} E_{j}=\hat{A}_{j}^{\phantom{\dagger}}\left(\hat{A}_{j}^{\dagger} \hat{A}_{j}^{\phantom{\dagger}}+E_{j}\right)=\hat{A}_{j}^{\phantom{\dagger}} \hat{H}_{j}. \end{aligned} Consider the set of states defined by |ϕj+1=ÂjÂj1Â1Â0|ψ|\phi_{j+1} \rangle=\hat{A}_{j}^{\phantom{\dagger}} \hat{A}_{j-1}^{\phantom{\dagger}} \cdots \hat{A}_{1}^{\phantom{\dagger}} \hat{A}_{0}^{\phantom{\dagger}}| \psi\rangle. We want to compute ϕj+1|ϕj+1)=ψ|Â0Â1ÂjÂjÂ1Â0|ψ0\left.\left\langle\phi_{j + 1}\right| \phi_{j +1}\right)=\langle\psi| \hat{A}_{0}^{\dagger} \hat{A}_{1}^{\dagger} \cdots \hat{A}_{j}^{\dagger} \hat{A}_{j}^{\phantom{\dagger}} \cdots \hat{A}_{1}^{\phantom{\dagger}} \hat{A}_{0}^{\phantom{\dagger}}|\psi\rangle \geqslant 0 for all jj. Start with j=1j=1 :

ϕ1|ϕ1=ψ|Â0Â0|ψ=ψ|(ĤE0)|ψ=EE00E=E0 or E>E0.ϕ2|ϕ2=ψ|Â0Â1Â1Â0|ψ=ψ|Â0(Ĥ1E1)Â0|ψ but Ĥ1Â0=Â0Ĥ0=ψ|Â0Â0(Ĥ0E1)|ψ=ψ|Â0Â0|ψ(EE1)=(EE1)(EE0)0E=E1 or E>E1.\begin{aligned} &\left\langle\phi_{1} | \phi_{1}\right\rangle=\langle\psi| \hat{A}_{0}^{\dagger} \hat{A}_{0}^{\phantom{\dagger}}|\psi\rangle=\langle\psi|\left(\hat{H}-E_{0}\right)|\psi\rangle \\ & =E-E_{0} \geq 0 \\ &\Rightarrow E=E_{0} \text { or } E > E_{0} . \\ &\left\langle\phi_{2} | \phi_{2}\right\rangle=\langle\psi| \hat{A}_{0}^{\dagger} \hat{A}_{1}^{\dagger} \hat{A}_{1}^{\phantom{\dagger}} \hat{A}_{0}^{\phantom{\dagger}}|\psi\rangle \\ &=\langle\psi| \hat{A}_{0}^{\dagger}\left(\hat{H}_{1}-E_{1}\right) \hat{A}_{0}^{\phantom{\dagger}}|\psi\rangle \quad \text { but } \hat{H}_{1} \hat{A}_{0}^{\phantom{\dagger}}=\hat{A}_{0}^{\phantom{\dagger}} \hat{H}_{0} \\ &=\langle\psi| \hat{A}_{0}^{\dagger} \hat{A}_{0}^{\phantom{\dagger}}\left(\hat{H}_{0}-E_{1}\right)|\psi\rangle \\ &=\langle\psi| \hat{A}_{0}^{\dagger} \hat{A}_{0}^{\phantom{\dagger}}|\psi\rangle\left(E-E_{1}\right)=\left(E-E_{1}\right)\left(E-E_{0}\right) \geqslant 0 \\ &\Rightarrow E=E_{1} \text { or } E > E_{1} . \end{aligned}
Continuing in the same fashion, we have E=EjE=E_{j} or E>Ej max E>E_{j_{\text{ max }}} (if the number of bound states terminates with a continuum of states above).

So, let’s assume |ψ=|ψj|\psi\rangle=\left|\psi_{j}\right\rangle is a bound state and E=EjE=E_{j}. Then ϕj+1|ϕj+1=(EEj)(EEj1)(EE1)(EE0)=0\left\langle \phi_{j+1} | \phi_{j+ 1}\right\rangle=\left(E-E_{j}\right)\left(E-E_{j-1}\right) \cdots\left(E-E_{1}\right)\left(E-E_{0}\right)=0. So ÂjÂj1Â1Â0|ψ=0\hat{A}_{j}^{\phantom{\dagger}} \hat{A}_{j-1}^{\phantom{\dagger}} \cdots \hat{A}_{1}^{\phantom{\dagger}} \hat{A}_{0}^{\phantom{\dagger}}|\psi\rangle=0. We rewrite this as Âj|ϕj=0\hat{A}_{j}^{\phantom{\dagger}}\left|\phi_{j}\right\rangle=0. Now examine Ĥj|ϕj=(ÂjÂj+Ej)|ϕj=Ej|ϕj\hat{H}_{j}\left|\phi_{j}\right\rangle=\left(\hat{A}_{j}^{\dagger} \hat{A}_{j}^{\phantom{\dagger}}+E_{j}\right)\left|\phi_{j}\right\rangle=E_{j} | \phi_{j}\rangle. This implies that |ϕj\left|\phi_{j}\right\rangle is an eigenstate of Ĥj\hat{H}_{j} with eigenvalue EjE_{j}. We find the eigenstate |ψ|\psi\rangle via |ψj=Â1Â2Âj1|ϕj(EjE0)(EjE1)(EjEj1)|\psi_{j}\rangle=\frac{\hat{A}_{1}^{\dagger} \hat{A}_{2}^{\dagger} \ldots \hat{A}_{j-1}^{\dagger} | \phi_{j}\rangle}{\sqrt{\left(E_{j}-E_{0}\right)\left(E_{j}-E_{1}) \cdots\left(E_{j}-E_{j-1}\right)\right.}}

Now take the Hermitian conjugate of the intertwining relation: ÂjĤj=Ĥj+1ÂjÂjĤj+1=ĤjÂj\hat{A}_{j}^{\phantom{\dagger}} \hat{H}_{j}=\hat{H}_{j+1} \hat{A}_{j}^{\phantom{\dagger}} ~~\Rightarrow \quad \hat{A}_{j}^{\dagger} \hat{H}_{j+1}=\hat{H}_{j} \hat{A}_{j}^{\dagger} so Ĥ|ψj=Ĥ0Â0Â1Âj1|ϕj=Â0Ĥ1Â1Âj1|ϕj=Â0Â1Âj1Ĥj|ϕj=EjÂ0Â1Âj1|ϕj=Ej|ψj\begin{aligned} \hat{H}\left|\psi_{j}\right\rangle & =\hat{H}_{0} \hat{A}_{0}^{\dagger} \hat{A}_{1}^{\dagger} \ldots \hat{A}_{j-1}^{\dagger}\left|\phi_{j}\right\rangle\\ & =\hat{A}_{0}^{\dagger} \hat{H}_{1} \hat{A}_{1}^{\dagger} \cdots \hat{A}_{j-1}^{\dagger}\left|\phi_{j}\right\rangle \\ &\vdots\\ & =\hat{A}_{0}^{\dagger} \hat{A}_{1}^{\dagger} \cdots \hat{A}_{j-1}^{\dagger} \hat{H}_{j}\left|\phi_{j}\right\rangle \\ & =E_{j} \hat{A}_{0}^{\dagger} \hat{A}_{1}^{\dagger} \cdots \hat{A}_{j-1}^{\dagger}\left|\phi_{j}\right\rangle=E_{j}\left|\psi_{j}\right\rangle \end{aligned} Hence, it is an eigenstate as claimed!

Superpotential

So how do we make this work? Let’s try an ansatz Âj=p̂2mi2mkjWj(kjx̂)\hat{A}_{j}^{\phantom{\dagger}}=\frac{\hat{p}}{\sqrt{2 m}}-\frac{i \hbar}{\sqrt{2 m}} k_{j} W_{j}\left(k_{j}^{\prime} \hat{x}\right) where Wj(kjx̂)W_{j}\left(k_{j}^{\prime} \hat{x}\right) is called the superpotential and is a real valued function of kjx̂k_{j}^{\prime} \hat{x}, and we have that kik_{i} and kjk_{j}^{\prime} are real "wavevectors." Then ÂjÂj=p̂22m+2kj22mWj2(kjx̂)i2mkj[p̂j,Wj(kjx̂)].\hat{A}_{j}^{\dagger} \hat{A}_{j}^{\phantom{\dagger}}=\frac{\hat{p}^{2}}{2 m}+\frac{\hbar^{2} k_{j}^{2}}{2 m} W_{j}^{2}\left(k_{j}^{\prime} \hat{x}\right)-\frac{i \hbar}{2 m} k_{j}\left[\hat{p}_{j}, W_{j}\left(k_{j}^{\prime} \hat{x}\right)\right].

Simple harmonic oscillator

So, if we can find WW such that V(x̂)=2k02mW02(k0x̂)ik02m[p̂,W0(k0x̂)]+E0V(\hat{x})=\frac{\hbar^{2} k_{0}}{2 m} W_{0}^{2}\left(k_{0}^{\prime} \hat{x}\right)-\frac{i \hbar k_{0}}{2 m}\left[\hat{p}, W_{0}\left(k_{0}^{\prime} \hat{x}\right)\right] + E_{0}, then we have had our first factorization. It turns out soluble problems have the superpotentials having the same functional form, which is a property called shape invariance, and is best illustrated with an example. If there is ambiguity, we must have kW(x)>0k W(x)>0 as xx \rightarrow \infty and kW(x)<0k W(x)<0 as xx \rightarrow-\infty, otherwise the wave function is not normalizable.

Let’s work on an example we already know—the simple harmonic oscillator. We have V(x̂)=12mω02x̂2V(\hat{x})=\frac{1}{2} m \omega_{0}^{2} \hat{x}^{2}. We find

12mω02x̂2=2k022mW02(k0x̂)ik02m[p̂,W0(k0x̂)]\frac{1}{2} m \omega_{0}^{2} \hat{x}^{2}=\frac{\hbar^{2} k_{0}^{2}}{2 m} W_{0}^{2}\left(k_{0}^{\prime} \hat{x}\right)-\frac{i \hbar k_{0}}{2 m}\left[\hat{p}, W_{0}\left(k_{0}^{\prime} \hat{x}\right)\right] Now, since [p̂,x̂]=i=[\hat{p}, \hat{x}]=-i \hbar= number, by inspection, we see that we should try W0(k0x̂)=k0x̂W_{0}\left(k_{0}^{\prime} \hat{x}\right)=k_{0}^{\prime} \hat{x}. Then we have 12mω02x̂2=2k02k022mx̂2ik02m(ik0)+E0=2k02k022mx̂22k0k02m+E0\begin{aligned} \frac{1}{2} m \omega_{0}^{2} \hat{x}^{2} & =\frac{\hbar^{2} k_{0}^{2} k_{0}^{\prime}{ }^{2}}{2 m} \hat{x}^{2}-\frac{i \hbar k_{0}}{2 m}\left(-i \hbar k_{0}^{\prime}\right)+E_{0} \\ & =\frac{\hbar^{2} k_{0}^{2} k_{0}^{\prime 2}}{2 m} \hat{x}^{2}-\frac{\hbar^{2} k_{0} k_{0}^{\prime}}{2 m}+E_{0} \end{aligned} This implies that we need mω0=|k0k0|andE0=2k0k02mm \omega_{0}=\hbar\left|k_{0} k_{0}^{\prime}\right| \quad \text{and}\quad E_{0}=\frac{\hbar^{2} k_{0} k_{0}^{\prime}}{2 m}
So, we choose k0k0=mω0k_{0} k_{0}^{\prime}=\frac{m \omega_{0}}{\hbar}, in order for W0(k0x)W_{0}\left(k_{0}^{\prime} x\right) to have the right sign as |x||x|\rightarrow \infty. This then implies that Â0=p̂2mi2mmω0x̂=12m(p̂imω0x̂) the same as before! \begin{aligned} \hat{A}_{0}^{\phantom{\dagger}} & =\frac{\hat{p}}{\sqrt{2 m}}-\frac{i \hbar}{\sqrt{2 m}} \frac{m \omega_{0} \hat{x}}{\hbar} \\ & =\frac{1}{\sqrt{2 m}}\left(\hat{p}-i m \omega_{0} \hat{x}\right) \quad \text { the same as before! } \end{aligned}

Now we compute the first auxiliary Hamiltonian in the chain by reversing the order of the ladder operators Ĥ1=Â0Â0+E0=12m(p̂imω0x̂)(p̂+imω0x̂)+12ω0=p̂22m+12mω02x̂2+12mimω0[p̂,x̂]i+12ω0=p̂22m+12mω02x̂2+32ω0Â1=Â0 and E1=32ω0.\begin{aligned} & \hat{H}_{1}=\hat{A}_{0}^{\phantom{\dagger}} \hat{A}_{0}^{\dagger}+E_{0}=\frac{1}{2 m}\left(\hat{p}-i m \omega_{0} \hat{x}\right)\left(\hat{p}+i m \omega_{0} \hat{x}\right)+\frac{1}{2} \hbar \omega_{0} \\ &=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} \hat{x}^{2}+\frac{1}{2 m} i m \omega_{0}\underbrace{[\hat{p},\hat{x}]}_{-i\hbar}+\frac{1}{2} \hbar \omega_{0} \\ &=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} \hat{x}^{2}+\frac{3}{2} \hbar \omega_{0} \\ & \Rightarrow \hat{A}_{1}^{\phantom{\dagger}}=\hat{A}_{0}^{\phantom{\dagger}} \text { and } E_{1}=\frac{3}{2} \hbar \omega_{0} . \end{aligned}

Note that this is the only example where Âj\hat{A}_{j}^{\phantom{\dagger}} is independent of jj. One can see that repeating this procedure gives the whole spectrum. The eigenstates also agree with what we did before. (Note, we can find the ground state via Â0|ϕ0=0\hat{A}_{0}\left|\phi_{0}\right\rangle=0 and determine the wavefunction by integrating the diff eq.)

Particle in a box

Our next example is particle in a box, which Schrodinger called "shooting sparrows with artillery." Consider V(x̂)=0V(\hat{x})=0 inside a box from L2-\frac{L}{2} to L2\frac{L}{2}. First recall that [p̂,f(x̂)]=if(x̂)[\hat{p}, f(\hat{x})]=-i \hbar f^{\prime}(\hat{x}), so [p̂,tan(kx̂)]=iksec2(kx̂)\left[\hat{p}, \tan \left(k^{\prime} \hat{x}\right)\right]=-i \hbar k^{\prime} \sec ^{2}\left(k^{\prime} \hat{x}\right). This motivates us to examine 2k22mW2(kx̂)ik2m[p̂,W(kx̂)]\frac{\hbar^{2} k^{2}}{2 m} W^{2}\left(k^{\prime} \hat{x}\right)-\frac{i \hbar k}{2 m}\left[\hat{p}, W\left(k^{\prime} \hat{x}\right)\right] for W=tanW=\tan. We find that it becomes 2k22mtan2(kx̂)2kk2msec2(kx̂).\frac{\hbar^{2} k^{2}}{2 m} \tan ^{2}(k ^ {\prime} \hat{x})-\frac{\hbar^{2} k k^{\prime}}{2 m} \sec ^{2}\left(k^{\prime} \hat{x}\right). Now, if we choose k=kk=k^{\prime}, then 2(k)22m(tan2(kx̂)sec2(kx̂))=2k22m= number.\frac{\hbar^{2} (k^{\prime})^{2}}{2 m}\left(\tan ^{2}\left(k^{\prime} \hat{x}\right)-\sec ^{2}\left(k^{\prime} \hat{x}\right)\right)=-\frac{\hbar^{2} k^{\prime 2}}{2 m}=\text { number}. Be sure to use the write trig identity to verify this.

So we choose Â0=12m(p̂iktan(kx̂))\hat{A}_{0}^{\phantom{\dagger}}=\frac{1}{\sqrt{2 m}}\left(\hat{p}-i \hbar k^{\prime} \tan \left(k^{\prime} \hat{x}\right)\right) and Â0Â0=12mp̂22k22mE0=2(k)22m\hat{A}_{0}^{\dagger} \hat{A}_{0}^{\phantom{\dagger}}=\frac{1}{2 m} \hat{p}^{2}-\frac{\hbar^{2} k^{\prime 2}}{2 m} \quad \Rightarrow ~~E_{0}=\frac{\hbar^{2} (k^{\prime})^{2}}{2 m}. Now we need to choose kk^{\prime} to have W(kx)W\left(k^{\prime} x\right) become infinity at the boundary. Why you may ask—we will find the wavefunction vanishes when the superpotential diverges, so this is the conventional boundary condition of the wavefunction vanishing at the edges of the box. We can increase kk^{\prime} until k=πLk^{\prime}=\frac{\pi}{L}. At that point tan(kx̂)\tan \left(k^{\prime} \hat{x}\right) will diverge at the boundary. Schrodinger argued not to increase kk^{\prime} further. But we will see in the homework that we can lift this restriction and still solve the problem. For now, we follow Schrodinger. Hence, we have E0=2π22mL2E_{0}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}. The ground state satisfies

[p̂iπLtan(πLx̂)]|ϕ0=0.\left[\hat{p}-i \hbar \frac{\pi}{L} \tan \left(\frac{\pi}{L} \hat{x}\right)\right]\left|\phi_{0} \rangle=0\right.. In coordinate space, this becomes iddxψ(x)=iπLtan(πLx)ψ(x)-i \hbar \frac{d}{d x} \psi(x)= i \hbar \frac{\pi}{L} \tan \left(\frac{\pi}{L} x\right) \psi(x), or ddxlnψ(x)=πLtan(πLx)lnψ(x)=πLxtan(πLx)dx=lnsec(πLx)+cψ(x)=ccos(πLx)\begin{aligned} \frac{d}{d x} \ln \psi(x)=-\frac{\pi}{L} \tan \left(\frac{\pi}{L} x\right) \Rightarrow \ln \psi(x) & =\frac{\pi}{L} \int^{x} \tan \left(\frac{\pi}{L} x^{\prime}\right) d x^{\prime} \\ & =-\ln \sec \left(\frac{\pi}{L} x\right)+c \\ \psi(x) & =c \cos \left(\frac{\pi}{L} x\right) \end{aligned} which is correct. Determining the normalization gives us that c=2Lc=\sqrt{\frac{2}{L}}.

Now we go onto the higher energy states: Ĥ1=Â0Â0+E0=Ĥ0+[Â0,Â0]=p̂22m+0V(x̂)+[Â0,Â0]=p̂22m+iπ2mL[p̂,tan(πLx̂)]×2=p̂22m+2π22mL22sec2(πLx̂)=p̂22m+2π2mL2(1+tan2(πLx))V1(x̂)=2π2mL2tan2(πLx̂)+2π2mL2=2k12mW12(k1x̂)+ik12m[p̂,W1(k1x)]+E1.\begin{aligned} \hat{H}_{1}& =\hat{A}_{0}^{\phantom{\dagger}} \hat{A}_{0}^{\dagger}+E_{0}=\hat{H}_{0}+\left[\hat{A}_{0}^{\phantom{\dagger}},\hat{A}_{0}^{\dagger}\right]=\frac{\hat{p}^{2}}{2 m}+\underbrace{0}_{V(\hat{x})}+\left[\hat{A}_{0}^{\phantom{\dagger}} ,\hat{A}_{0}^{\dagger}\right] \\ & =\frac{\hat{p}^{2}}{2 m}+\frac{i \hbar \pi}{2 m L}\left[\hat{p}, \tan \left(\frac{\pi}{L} \hat{x}\right)\right] \times 2 \\ & =\frac{\hat{p}^{2}}{2 m}+\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} \cdot 2 \sec ^{2}\left(\frac{\pi}{L} \hat{x}\right) \\ & =\frac{\hat{p}^{2}}{2 m}+\frac{\hbar^{2} \pi^{2}}{m L^{2}}\left(1+\tan ^{2}\left(\frac{\pi}{L} x\right)\right) \\ V_{1}(\hat{x}) & =\frac{\hbar^{2} \pi^{2}}{m L^{2}} \tan ^{2}\left(\frac{\pi}{L} \hat{x}\right)+\frac{\hbar^{2} \pi^{2}}{m L^{2}}=\frac{\hbar^{2} k_{1}}{2 m} W_{1}^{2}\left(k_{1}^{\prime} \hat{x}\right)+\frac{i \hbar k_{1}}{2 m}\left[\hat{p}, W_{1}\left(k_{1}^{\prime} x\right)\right] +E_{1}. \end{aligned} The "shape invariance" requirement suggests that we try the same form: W1(k1,x̂)=tan(k1x̂)W_{1}\left(k_{1}^{\prime}, \hat{x}\right)=\tan (k_{1}^{\prime} \hat{x}). This gives 2k122mtan2(k1x̂)+2k1k12msec2(k1x̂)=2k1k12m+2k12m(k1+k1)tan2(k1x̂)k1=πLk1(k1+k1)=2π2L22π2mL2=2k1k12m+E1k1(k1+πL)=2π2L2k1=πL or 2πL\begin{aligned} & \frac{\hbar^{2} k_{1}^{2}}{2 m} \tan ^{2}\left(k_{1}^{\prime} \hat{x}\right)+\frac{\hbar^{2} k_{1} k_{1}^{\prime}}{2 m} \sec ^{2}\left(k_{1}^{\prime} \hat{x}\right) \\ & =\frac{\hbar^{2} k_{1} k_{1}^{\prime}}{2 m}+\frac{\hbar^{2} k_{1}}{2 m}\left(k_{1}+k_{1}^{\prime}\right) \tan ^{2}\left(k_{1}^{\prime} \hat{x}\right) \\ & \Rightarrow k_{1}^{\prime}=\frac{\pi}{L} \quad k_{1}\left(k_{1}+k_{1}^{\prime}\right)=\frac{2 \pi^{2}}{L^{2}} \quad \frac{\hbar^{2} \pi^{2}}{m L^{2}}=\frac{\hbar^{2} k_{1} k_{1}^{\prime}}{2 m}+E_{1} \\ & \Rightarrow k_{1}\left(k_{1}+\frac{\pi}{L}\right)=\frac{2 \pi^{2}}{L^{2}} \quad \Rightarrow \quad k_{1}=\frac{\pi}{L} \text { or }-\frac{2 \pi}{L} \end{aligned} E1=2π2mL22k1π2mL pick k1=2πL for E1>E0.E_{1}=\frac{\hbar^{2} \pi^{2}}{m L^{2}}-\frac{\hbar^{2} k_{1} \pi}{2 m L} \Rightarrow \text { pick } k_{1}=-\frac{2 \pi}{L} \quad \text { for } E_{1}>E_{0}. So E1=22π2mL2andÂ1=12m(p̂i2πLtan(πx̂L)).E_{1}=\frac{2 \hbar^{2} \pi^{2}}{m L^{2}} \quad \text{and}\quad \hat{A}_{1}=\frac{1}{\sqrt{2 m}}\left(\hat{p}-\frac{i \hbar 2 \pi}{L} \tan \left(\frac{\pi \hat{x}}{L}\right)\right).

Let’s find the wavefunction. We have Â1|ϕ1=0idϕ1dx=i2πLtan(πxL)ϕ2ddxlnϕ1=2πLtanπxLϕ1(x)=ccos2(πxL)=83Lcos2(πxL)\begin{aligned} \hat{A}_{1} |\phi_{1}\rangle=0 \Rightarrow \quad-i \hbar \frac{d \phi_{1}}{d x} & =i \hbar \frac{2 \pi}{L} \tan \left(\frac{\pi x}{L}\right) \phi_{2} \\ \frac{d}{d x} \ln \phi_{1} & =-\frac{2 \pi}{L} \tan \frac{\pi x}{L} \\ \phi_{1}(x) & =c^{\prime} \cos ^{2}\left(\frac{\pi x}{L}\right)=\sqrt{\frac{8}{3 L}} \cos ^{2}\left(\frac{\pi x}{L}\right) \end{aligned} and |ψ1)=Â0E1E0|ϕ1\left.| \psi_{1}\right)=\frac{\hat{A}_{0}^{\dagger}}{\sqrt{E_{1}-E_{0}}}\left|\phi_{1}\right\rangle ψ1(x)=83L1(41)2π22mL212m(iddx+iπLtan(πxL))cos2(πxL)=83LL3π(+iπL2cos(πxL)sinπxL+iπLsin(πxL)cos(πxL))=2Lisin(2πxL) up to a phase .\begin{aligned} \Rightarrow \psi_{1}(x) & =\sqrt{\frac{8}{3 L}} \cdot \frac{1}{\sqrt{\frac{(4-1)\hbar^{2} \pi^{2}}{2 m L^{2}}}} \frac{1}{\sqrt{2 m}}\left(-i \hbar \frac{d}{d x}+i \hbar \frac{\pi}{L} \tan \left(\frac{\pi x}{L}\right)\right) \cos ^{2}\left(\frac{\pi x}{L}\right) \\ & =\sqrt{\frac{8}{3L}} \frac{L}{\sqrt{3} \pi \hbar} \cdot \hbar \left(+i \frac{\pi}{L} \cdot 2 \cos \left(\frac{\pi x}{L}\right) \sin \frac{\pi x}{L}+i \frac{\pi}{L} \sin \left(\frac{\pi x}{L}\right) \cos \left(\frac{\pi x}{L}\right)\right) \\ & =\sqrt{\frac{2}{L}} i \sin \left(\frac{2 \pi x}{L}\right) \quad \checkmark \text { up to a phase }. \end{aligned}

One can continue, but it is tedious to do so term by term. Using an "induction-like" approach, you can find that kj=(j+1)πL,kj=πL,Ej=2(j+1)2π22mL2,andψj(x)=2Lsin((j+1)πxL)k_{j}=-(j+1) \frac{\pi}{L}, \quad k_{j}^{\prime}=\frac{\pi}{L}, \quad E_{j}=\frac{\hbar^{2}\left(j+1)^{2} \pi^{2}\right.}{2 m L^{2}}, \quad\text{and}\quad \psi_{j}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{(j+1) \pi x}{L}\right) just as we know from the differential equation approach.

So, why use this approach if it is harder? Two points—