Phys 506 lecture 7: Rotations and Angular Momentum

Vector operator

In quantum mechanics, we define a vector operator via [v̂i,L̂j]=ikεijkv̂k\left[\hat{v}_{i}, \hat{L}_{j}\right]=i \hbar \sum_k\varepsilon_{i j k} \hat{v}_{k} Oddly, it also satisfies [L̂i,v̂j]=ikεijkv̂k\left[\hat{L}_{i}, \hat{v}_{j}\right]=i \hbar \sum_k\varepsilon_{i j k} \hat{v}_{k} as well. One might have thought there is a sign change, but there isn’t. On the homework, you will verify that r̂\hat{\vec{r}} and p̂\hat{\vec{p}} are both vector operators.

Rotations

Let’s start with rotations. First note that rotations form a group (closed under multiplication, unique inverse, etc.). But they are a non-Abelian group, because when we apply the rotations in one order, they are not the same as when we apply them in the opposite order:

The claim is all rotations can be written as R̂(α,en)=exp[iαenL̂]\hat{R}\left(\alpha, \vec{e}_{n}\right)=\exp \left[-i \frac{\alpha}{\hbar} \vec{e}_{n} \cdot \hat{\vec{L}}\right] en\vec{e}_{n}, a unit vector, is the axis of the rotation and α\alpha is the angle of the rotation in radians. L̂\hat{\vec{L}} is the quantum operator for angular momentum. If you look back to what we did with the spin matrices in lecture 1, we showed this holds there as well with L̂Ŝ=2σ\hat{\vec{L}} \rightarrow \hat{\vec{S}}=\frac{\hbar}{2} \vec{\sigma}. (The factor of 12\frac{1}{2} is needed to be correct).

Change of basis

Suppose we transform states via |ψR̂|ψ|\psi\rangle \rightarrow \hat{R}|\psi\rangle, then Ô|ψR̂Ô|ψ=R̂ÔR̂(R̂|ψ)\hat{O}|\psi\rangle \rightarrow \hat{R} \hat{O}|\psi\rangle=\hat{R} \hat{O} \hat{R}^{\dagger}(\hat{R}|\psi\rangle). This implies that operators transform as ÔR̂ÔR̂\hat{O} \rightarrow \hat{R} \hat{O} \hat{R}^{\dagger}.

On the HW, we showed that R̂(α,êz)L̂zR̂(α,êz)=L̂zR̂(α,êz)L̂xR̂(α,êz)=cosαL̂x+sinαL̂yR̂(α,ez)L̂yR̂(α,êz)=sinαL̂x+cosαL̂y\begin{aligned} & \hat{R}\left(\alpha, \hat{e}_{z}\right) \hat{L}_{z} \hat{R}^{\dagger}\left(\alpha, \hat{e}_{z}\right)=\hat{L}_{z} \\ & \hat{R}\left(\alpha, \hat{e}_{z}\right) \hat{L}_{x} \hat{R}^{\dagger}\left(\alpha, \hat{e}_{z}\right)=\cos \alpha \hat{L}_{x}+\sin \alpha \hat{L}_{y} \\ & \hat{R}\left(\alpha, \vec{e}_{z}\right) \hat{L}_{y} \hat{R}^{\dagger}\left(\alpha, \hat{e}_{z}\right)=-\sin \alpha \hat{L}_{x}+\cos \alpha \hat{L}_{y} \end{aligned} We did this by using the Hadamard identity. This is an easier way to do the calculation than to use disentangling. Since a vector operator satisfies the same commutation with L̂\hat{\vec{L}} as L̂\hat{\vec{L}} does (i.e. L̂\hat{\vec{L}} is a vector operator), we have eiαL̂zv̂ieiαL̂z=jOij(z)v̂jO(z)=(cosαsinα0sinαcosα0001)\begin{aligned} & e^{-i \alpha \frac{\hat{L}_{z}}{\hbar}} \hat{v}_{i} e^{i \alpha \frac{\hat{L}_{z}}{\hbar}}=\sum_{j} O_{i j}^{(z)} \hat{v}_{j} \\ & O^{(z)}=\left(\begin{array}{ccc} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{array}\right) \end{aligned}

Next, via permutations, we can verify that eiαL̂xv̂ieiαL̂x=jOij(x)v̂jeiαL̂yv̂ieiαL̂y=jOij(y)v̂jÔ(x)=(1000cosαsinα0sinαcosα)Ô(y)=(cosα0sinα010sinα0cosα)\begin{aligned} & e^{-i \alpha \frac{\hat{L}_{x}}{\hbar}} \hat{v}_{i} e^{i \alpha \frac{\hat{L}_{x}}{\hbar}}=\sum_{j} O_{i j}^{(x)} \hat{v}_{j} \\ & e^{-i \alpha \frac{\hat{L}_{y}}{\hbar}} \hat{v}_{i} e^{i \alpha \frac{\hat{L}_{y}}{\hbar}}=\sum_{j} O_{i j}^{(y)} \hat{v}_{j} \\ & \hat{O}^{(x)}=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{array}\right) \quad \hat{O}^{(y)}=\left(\begin{array}{ccc} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{array}\right) \end{aligned}

What about the general case eiαenL̂e^{-i \alpha \frac{\vec{e}_{n} \cdot \hat{\vec{L} }}{\hbar}}? We can work this out with no extra calculation using only geometry. Assume en\vec{e}_{n} points in the θ,ϕ\theta , \phi direction.

The spherical unit vectors are en=(sinθcosϕ,sinθsinϕ,cosθ)eθ=(cosθcosϕ,cosθsinϕ,sinθ)eϕ=(sinϕ,cosϕ,0)\begin{aligned} & \vec{e}_{n}=\left(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta\right) \\ & \vec{e}_{\theta}=\left(\cos \theta \cos \phi, \cos \theta \sin \phi,-\sin \theta\right) \\ & \vec{e}_{\phi}=\left(-\sin \phi, \cos \phi , 0\right) \end{aligned}

We can use the results we already calculated, assuming we can establish they hold in the new n,θ,ϕn, \theta, \phi coordinate system. That is, if β{n,θ,ϕ}\beta \in\{n, \theta, \phi\}, we need to show [L̂β,v̂γ]=iδεβγδv̂δ\left[\hat{L}_{\beta}, \hat{v}_{\gamma}\right]=i \hbar \sum_\delta\varepsilon_{\beta \gamma \delta} \hat{v}_{\delta}

Consider the orthogonal matrix OO that satisfies en=Oezeθ=Oexeϕ=Oey\begin{aligned} & \vec{e}_{n}= O \vec{e}_{z} \\ & \vec{e}_{\theta}=O \vec{e}_{x} \\ & \vec{e}_{\phi}=O \vec{e}_{y} \end{aligned}

From the results we found for en,eθ\vec{e}_{n}, \vec{e}_{\theta} and eϕ\vec{e}_{\phi}, we have O=(cosθcosϕsinϕsinθcosϕcosθsinϕcosϕsinθsinϕsinθ0cosθ),O=\left(\begin{array}{ccc} \cos \theta \cos \phi & -\sin \phi & \sin \theta \cos \phi \\ \cos \theta \sin \phi & \cos \phi & \sin \theta \sin \phi \\ -\sin \theta & 0 & \cos \theta \end{array}\right), but we really only need the fact that OTO=1O^{T} O=1 which implies that OO is orthogonal.

Note, we have vβ=jOijvjv_{\beta}=\sum_{j} O_{i j} v_{j} with

β\beta ii
nn \leftrightarrow zz
θ\theta \leftrightarrow xx
ϕ\phi \leftrightarrow yy

The commutation relation is [v̂β,L̂γ]=iOiiOjjεijkv̂kCartesian basis\begin{aligned} & {\left[\hat{v}_{\beta,} \hat{L}_{\gamma}\right]=i \hbar O_{ii^{\prime}} O_{jj^{\prime}} \varepsilon_{i^{\prime} j^{\prime} k^{\prime}} \underbrace{\hat{v}_{k^{\prime}}}_{\text{Cartesian basis}}} \end{aligned} Here we have βiγj\beta \leftrightarrow i \quad \gamma \leftrightarrow j and repeated indices are summed over. But, vk=OkδTOδlv̂l=iεijkOiiOjjOδkv̂δspherical.v_{k^{\prime}}=O_{k^{\prime} \delta}^{T} O_{\delta l} \hat{v}_{l} = i \hbar \varepsilon_{i^{\prime} j^{\prime} k^{\prime}} O_{i i^{\prime}} O_{j j^{\prime}} \underbrace{O_{\delta k^{\prime}} \hat{v}_{\delta}}_{\text{spherical}} . If ijkεijkOiiOjjOkk=εijkspherical\sum_{i^{\prime} j^{\prime} k^{\prime}} \varepsilon_{i^{\prime} j^{\prime} k^{\prime}} O_{i i^{\prime}} O_{j j^{\prime}} O_{k k^{\prime}}=\underbrace{\varepsilon_{i j k}}_{\text {spherical}}, then we have [v̂β,L̂γ]=iεβγδv̂δ[\hat{v}_{\beta},\hat{L}_{\gamma}] = i \hbar \varepsilon_{\beta \gamma \delta } \hat{v}_\delta in the spherical basis.

Check: i=j=nεijkanti-symmetric on interchange of ijOniOkjsymmetric on interchange of ijOkkOi=j=n \quad \underbrace{\varepsilon_{i^{\prime} j^{\prime} k^{\prime}}}_{\text{anti-symmetric on interchange of } i^{\prime} j^{\prime}} \underbrace{O_{n i^{\prime}} O_{k j^{\prime}}}_{\text{symmetric on interchange of } i^{\prime} j^{\prime}} O_{k k^{\prime}} \Rightarrow O
i=n,j=θ:εxyzOnxOθyOδz+εyzxOnyOθzOδx+εzxyOnzOθxOδy+εxzyOnxOθzOδy+εzyxOnzOθyOδx+εyxzOnyOθxOδz\begin{aligned} & i=n, j=\theta: \\ & \Rightarrow \varepsilon_{x y z} O_{n x} O_{\theta y} O_{\delta z}+\varepsilon_{y z x} O_{n y} O_{\theta z} O_{\delta x}+\varepsilon_{z x y} O_{n z} O_{\theta x} O_{\delta y} \\ &+\varepsilon_{x z y} O_{n x} O_{\theta z} O_{\delta y}+\varepsilon_{z y x} O_{n z} O_{\theta y} O_{\delta x}+\varepsilon_{y x z} O_{n y} O_{\theta x} O_{\delta z} \end{aligned} The top row has all ε\varepsilon’s +1+1, bottom has all 1-1. Careful inspection shows this is detO\operatorname{det} O. But since OTO=𝕀detOTdetO=1detO=±1O^{T} O=\mathbb{I} \Rightarrow \operatorname{det} O^{T} \operatorname{det} O=1 \Rightarrow \operatorname{det} O= \pm 1 for rotations, we find detO=1\operatorname{det} O=1 (just calculate the determinant of the explicit matrix OO above).

Angular momentum operators and eigenstates

It is easy to see from this that we have established the result we need. Essentially we have after the rotation ezenexeθeyeϕ\vec{e}_{z} \rightarrow \vec{e}_{n} \quad \vec{e}_{x} \rightarrow \vec{e}_{\theta} \quad \vec{e}_{y} \rightarrow \vec{e}_{\phi}.

You should have already verified from the algebras of L̂x,L̂y\hat{L}_{x}, \hat{L}_{y} and L̂z\hat{L}_{z} that

L̂z|lm=m|lmL̂+|lm=l(l+1)m(m+1)|lm+1)=(lm)(l+m+1)|lm+1L̂|lm=l(l+1)m(m1)|lm1=(l+m)(lm+1)|lm1L̂2|lm=2l(l+1)|lm\begin{aligned} \hat{L}_{z}|l m\rangle & =\hbar m|l m\rangle \\ \hat{L}_{+}|l m\rangle & =\hbar \sqrt{l(l+1)-m(m+1)} | l m+1) \\ & =\hbar \sqrt{(l-m)(l+m+1)}|l m+1\rangle \\ \hat{L}_{-}|l m\rangle & =\hbar \sqrt{l(l+1)-m(m-1)}|l m-1\rangle \\ & =\hbar \sqrt{(l+m)(l-m+1)}|l m-1\rangle \\ \hat{L}^{2}|l m\rangle & =\hbar^{2} l(l+1)|l m\rangle \end{aligned} Using L̂2=12(L̂+L̂+L̂L̂+)+L̂zL̂z\hat{L}^{2}=\frac{1}{2}\left(\hat{L}_{+} \hat{L}_{-}+\hat{L}_{-} \hat{L}_{+}\right)+\hat{L}_{z} \hat{L}_{z} and the above results we see that because 22[(lm)(l+m+1)(l+m+1)(lm)+(l+m)(lm+1)(lm+1)(l+m)]+2m2=2[12(lm)(l+m+1)+12(l+m)(lm+1)+m2]=2[12(l2m2+lm+l2m2+l+m)+m2]=2l(l+1).\begin{aligned} \frac{\hbar^{2}}{2} & {[\sqrt{(l-m)(l+m+1)} \sqrt{(l+m+1)(l-m)}} \\ & +\sqrt{(l+m)(l-m+1)(l-m+1)(l+m)}]+\hbar^{2} m^{2} \\ = & \hbar^{2}\left[\frac{1}{2}(l-m)(l+m+1)+\frac{1}{2}(l+m)(l-m+1)+m^{2}\right] \\ & =\hbar^{2}\left[\frac{1}{2}\left(l^{2}-m^{2}+l-m+l^{2}-m^{2}+l+m\right)+m^{2}\right] \\ & =\hbar^{2} l(l+1). \end{aligned}

We can put these results together to verify that |θ,ϕ=eiϕL̂zeiθL̂y|θ=0,ϕ=0.|\theta, \phi\rangle=e^{-i \phi \frac{\hat{L}_{z}}{\hbar}} e^{-i \theta \frac{\hat{L}_{y}}{\hbar}}|\theta{=}0, \phi{=}0\rangle.

As a check, we verify that eiθ̂|θ,ϕ=eiθ|θ,ϕeiϕ̂|θ,ϕ=eiϕ|θ,ϕ\begin{aligned} & e^{i \hat{\theta}}|\theta, \phi\rangle=e^{i \theta}|\theta, \phi\rangle \\ & e^{i \hat{\phi}}|\theta, \phi\rangle=e^{i \phi}|\theta, \phi\rangle \end{aligned} with eiθ̂=ẑ+ix̂2+ŷ2r̂eiϕ̂=x̂+iŷx̂2+ŷ2e^{i \hat{\theta}}=\frac{\hat{z}+i \sqrt{\hat{x}^{2}+\hat{y}^{2}}}{\hat{r}} \quad e^{i \hat{\phi}}=\frac{\hat{x}+i \hat{y}}{\sqrt{\hat{x}^{2}+\hat{y}^{2}}}. We must define these in this way because θ̂\hat{\theta} and ϕ̂\hat{\phi} are not well-defined quantum operators.

Because r̂\hat{r} commutes with L̂\hat{\vec{L}} and (x̂,ŷ,ẑ)(\hat{x}, \hat{y}, \hat{z}) is a vector operator, we can establish this result via Hadamard. You will verify this on the homework.

Exponential disentangling and angular momentum

We end by discussing exponential disentangling. We will need to compute eiθL̂y=eiθL̂+L̂2i=eθ2(L̂+L̂)e^{i \theta \frac{\hat{L}_{y}}{\hbar}}=e^{i \frac{\theta}{\hbar} \frac{\hat{L}_{+}-\hat{L}_{-}}{2i}} =e^{\frac{\theta}{2 \hbar}\left(\hat{L}_{+}-\hat{L}_{-}\right)} We derived disentangling in lecture 1. It gives eθ2(L̂+L̂)=etan(θ2)L̂e2lncosθ2L̂zetan(θ2)L̂ze^{\frac{\theta}{2 \hbar}(\hat{L}_{+}-\hat{L}_{-})}=e^{-\tan \left(\frac{\theta}{2}\right) \frac{\hat{L}_{-}}{\hbar}-} e^{2 \ln \cos \frac{\theta}{2} \frac{\hat{L}_{z}}{\hbar}} e^{\tan \left(\frac{\theta}{2}\right) \frac{\hat{L}_{z}}{\hbar}} (there is a similar one with L̂\hat{L}_{-} on the right and L̂+\hat{L}_{+}on the left)
We will use this to find spherical harmonics in the next lecture. In particular, note that |θ,ϕ=eiϕL̂zeiθL̂y|θ=0,ϕ=0=eiϕL̂zetan(θ2)L̂e2lncosθ2L̂zetan(θ2)L̂+|θ=0,ϕ=0\begin{aligned} \left|\theta , \phi\right\rangle & =e^{-i \phi \frac{\hat{L}_{z}}{\hbar}} e^{-i \frac{\theta \hat{L}_{y}}{\hbar}}|\theta{=}0, \phi{=}0\rangle \\ & =e^{-i \phi \frac{\hat{L}_{z}}{\hbar}} e^{\tan \left(\frac{\theta}{2}\right) \frac{\hat{L}_{-}}{\hbar}} e^{2 \ln \cos \frac{\theta}{2} \frac{\hat{L}_{z}}{\hbar}} e^{-\tan \left(\frac{\theta}{2}\right) \frac{\hat{L}_{+}}{\hbar}} | \theta{=}0, \phi{=}0 \rangle \end{aligned} At the moment this does not look too exciting, but we will see that it is exactly what we need in the next lecture.