Phys 506 HW1: Working with Operators

1 Problem 1

1.) Compute the eigenstates of the operator $\vec{e}_n \cdot \vec{s}$, where

 $\vec{e}_n = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ is a unit vector that points in the θ, ϕ direction (we use the physicists standard where θ is the angle from the vertical and ϕ is the polar angle in the x - y plane). Write $\hat{\vec{S}} = \frac{\hbar}{2}\vec{\sigma}$ and solve the problem by diagonalizing the 2×2 matrix. (remember to normalize your final answer).

Your final answer is a 2 component spinor of the form $\binom{\alpha}{\beta}$. Use <u>only</u> $\cos \frac{\theta}{2}, \sin \frac{\theta}{2}, e^{i\phi}$ and numbers in your final answer. Make sure your final answer is in the form where α , the top component of the spinor, is *real*. (Look up some trig identities if your answer looks complicated; the half angle formulas will be helpful.)

Note that if we examine

$$\left(\vec{e}_n\cdot\hat{\vec{S}}\right)^2 = \frac{\hbar^2}{4}\left(\vec{e}_n\cdot\vec{\sigma}\right)^2 = \frac{\hbar^2}{4}\vec{e}_n\cdot\vec{e}_n = \frac{\hbar^2}{4}$$

we see that the eigenvalues of $\vec{e}_n \cdot \hat{\vec{S}}$ must be $\pm \frac{\hbar}{2}$ for any direction θ, ϕ ! If you know about the Stern-Gerlach experiment, this explains why it gives the result it gives.

2 Problem 2

2.) Derive the matrices corresponding to the operators \hat{L}_x , \hat{L}_y , and \hat{L}_z in the l = 1 angular momentum representation. They satisfy

$$(L_i)_{mm'} = \hbar \langle l = 1, m | \hat{L}_i | l = 1, m' \rangle = \hbar (M_i)_{mm'}$$

with M a dimensionless matrix.

You should find the computation of L_z is easiest because the states $|l = 1, m\rangle$ are eigenstates of \hat{L}_z . You may find using the raising and lowering operators and the fact that $\hat{L}_{\pm} = \hat{L}_x \pm i \hat{L}_y$ make your calculations easier. (Use the result for $\hat{L}_+ |lm\rangle$ etc.) (i.e, $\hat{L}_+ |10\rangle = \sqrt{2}\hbar |11\rangle$, etc.)

You should find
$$M_x = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \quad M_y = \begin{pmatrix} 0 & -\frac{i}{\sqrt{2}} & 0 \\ \frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\ 0 & \frac{i}{\sqrt{2}} & 0 \end{pmatrix}$$
 and $M_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$

Note that because the \hat{L}_z eigenvalues are \hbar , 0, and $-\hbar$, we have

$$(M_z - 1) M_z (M_z + 1) = 0$$

$$\Rightarrow M_z (M_z^2 - 1) = 0$$

or $M_z^3 = M_z$

But since this is true for any direction, we have $M_i^3 = M_i$.

Indeed, just like we argued about spin $\frac{1}{2}$ above, we should have $\left(\vec{e}_n \cdot \vec{M}\right)^3 = \left(\vec{e}_n \cdot \vec{M}\right)$ with $\vec{e}_n = (\sin \alpha \cos \beta, \sin \alpha \sin \beta, \cos \alpha)$. You now will show this.

First compute

$$\vec{e}_n \cdot \vec{M} = \begin{pmatrix} \cos \alpha & \frac{1}{\sqrt{2}} \sin \alpha e^{-i\beta} & 0\\ \frac{1}{\sqrt{2}} \sin \alpha e^{i\beta} & 0 & \frac{1}{\sqrt{2}} \sin \alpha e^{i\beta}\\ 0 & \frac{1}{\sqrt{2}} \sin \alpha e^{i\beta} & -\cos \alpha \end{pmatrix},$$

Then compute $\left(\vec{e}_{n}, \vec{M}\right)^{2}$ and $\left(\vec{e}_{n} \cdot \vec{M}\right)^{3}$ to verify $\left(\vec{e}_{n} \cdot \vec{M}\right)^{3} = \left(\vec{e}_{n} \cdot \vec{M}\right).$ Use this result to show that

$$\exp[i\vec{v}\cdot\vec{M}] = \sum_{n=0}^{\infty} \frac{(i)^n}{n!} |v|^n \left(\vec{e_v}\cdot\vec{M}\right)^n$$
$$= \mathbb{1} + i\sin|v| \left(\vec{e_\sigma}\cdot\vec{M}\right) + (\cos|v|-1) \mid \vec{e_v}\cdot\vec{M}\right)^2,$$

with $\vec{e}_v = \frac{\vec{v}}{|v|} = (\sin \alpha \cos \beta, \sin \alpha \sin \beta, \cos \alpha)$. This is another case where we can explicitly compute the exponential of a matrix. If you wish to try, it does not work for any higher angular momentum.

3 Problem 3

3.) Using what you know about exponentials of operators $e^{\hat{A}}e^{\hat{B}}$ show that, in general, we have

$$e^{i\vec{v}\cdot\vec{\sigma}}e^{i\vec{v}'\cdot\vec{\sigma}}\neq e^{i(\vec{v}+\vec{v}')\cdot\sigma}$$

Under what circumstances are they equal (this will be a relation between \vec{v} and \vec{v}' ?

Hint: Consider BCH for Pauli matrices; do not try to multiply the matrices for $e^{i\vec{v}\cdot\vec{\sigma}}$ and $e^{i\vec{v}'\cdot\vec{\sigma}}$.

Problem 4 4

4.) Working with the l = 1 angular momentum matrices, compute $e^{-i\theta M_z} M_i e^{i\theta M_z}$. Use the Hadamard relation (which holds for matrices). Note that the commutators never terminate, but they do eventually repeat in a pattern. Determine what the pattern yields in terms of trig functions.

Problem 5 $\mathbf{5}$

5.) Consider the symplectic group algebra

$$[K_0, K_{\pm}] = \pm K_{\pm} \quad [K_+, K_-] = -2K_0$$

This is the same as the SU(2) algebra, but there is a minus sign on the K_0 operator.

Verify that
$$K_{+} = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$
 $K_{-} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $K_{0} = \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ satisfy the above algebra.

Compute $\exp\left(-\xi K_{+}+2i\eta K_{0}+\xi^{*}K_{-}\right)$, where ξ and η are complex numbers.

Hint: First compute $(-\xi K_+ + 2i\eta K_0 + \xi^* K_-)^2$ and use that result to simplify your work. Review hyperbolic functions if the power series are unfamiliar. Your final result will have the form

$$\left(\begin{array}{cc} K^* & \lambda^* \\ \lambda & K \end{array}\right) \quad (K \text{ and } \lambda \text{ are functions of } \xi \text{ and } \eta)$$

Factorize this to show the exponential disentangling identity for the symplectic group given by

$$\exp\left[-\xi K_{+}+2i\eta K_{0}+\xi^{*}K_{-}\right]=e^{-\frac{\lambda}{K^{*}}K_{+}}e^{-2\ln K^{*}K_{0}}e^{\frac{\lambda^{*}}{K^{*}}K_{-}}.$$

6 Problem 6

6.) In lecture 2, we derived the following simplified BCH formula

$$e^{\hat{A}}e^{\hat{B}} = e^{\hat{A}+\hat{B}+\frac{1}{2}[\hat{A},\hat{B}]+\frac{1}{12}[\hat{A},[\hat{A},\hat{B}]]+\frac{1}{12}[\hat{B},[\hat{B},\hat{A}]]},$$

which is exact if

$$\begin{split} & [\hat{A}, [\hat{A}, [\hat{A}, \hat{B}]]] = 0 \\ & [\hat{B}, [\hat{A}, [\hat{A}, \hat{B}]]] = 0 \\ & [\hat{A}, [\hat{B}, [\hat{B}, \hat{A}]]] = 0 \\ & [\hat{B}, [\hat{B}, [\hat{B}, \hat{A}]]] = 0. \end{split}$$

We want to re-express this in a different form.

Let $\hat{X} = \hat{A}$ and $\hat{Y} = \hat{B} + \frac{1}{2}[\hat{A}, \hat{B}]$

Then

$$\begin{split} \hat{A} &= \hat{X} \text{ and } \hat{B} = \hat{Y} - \frac{1}{2} [\hat{A}, \hat{B}] \\ &= \hat{Y} - \frac{1}{2} \left[\hat{X}, \hat{Y} - \frac{1}{2} [\hat{A}, \hat{B}] \right] \\ &= \hat{Y} - \frac{1}{2} [\hat{X}, \hat{Y}] + \frac{1}{4} [\hat{X}, [\hat{X}, \hat{Y}]] \end{split}$$

since higher-order terms vanish.

Rearrange the BCH formula to its equivalent form

$$e^{\hat{X}}e^{\hat{Y}}e^{-\frac{1}{2}[\hat{X},\hat{Y}]}e^{-\frac{1}{3}[\hat{Y},[\hat{Y},\hat{X}]]}e^{\frac{1}{6}[\hat{X},[\hat{X},\hat{Y}]]}e^{\hat{X},\hat{Y}]} = e^{\hat{X}+\hat{Y}}$$

(show your work, and recall $[\hat{X}[\hat{X},\hat{Y}]]$ and $[\hat{Y},[\hat{Y},\dot{X}]]$ commute with everything.)

Now consider the time evolution of a particle mowing in a linear potential with

$$\hat{H} = \frac{\hat{p}^2}{2m} + F\hat{x}$$
 (a gravitational potential)

The time evolution operator is $e^{-i\hat{H}t} = e^{-it[\frac{\hat{p}^2}{2m} + F\hat{x}]}$. Using the notation from earlier in the problem, pick $\hat{X} = -it\frac{\hat{p}^2}{2m}$ $\hat{Y} = -itF\hat{x}$, with $[\hat{x},\hat{p}] = i\hbar$. Use the BCH formula you derived above to compute a factorized form of $e^{-i\hat{H}t}$. Your answer will have four factors in it. Be careful. The order of the factors matters.