
Phys 506 HW1: Working with Operators

1 Problem 1
1.) Compute the eigenstates of the operator e⃗n · s⃗, where
e⃗n = (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector that points in the θ, ϕ direc-
tion (we use the physicists standard where θ is the angle from the vertical and
ϕ is the polar angle in the x− y plane). Write ˆ⃗

S = ℏ
2
σ⃗ and solve the problem

by diagonalizing the 2×2 matrix. (remember to normalize your final answer).

Your final answer is a 2 component spinor of the form
(
α
β

)
. Use only

cos θ
2
, sin θ

2
, eiϕ and numbers in your final answer. Make sure your final an-

swer is in the form where α, the top component of the spinor, is real. (Look
up some trig identities if your answer looks complicated; the half angle for-
mulas will be helpful.)

Note that if we examine(
e⃗n ·

ˆ⃗
S
)2

=
ℏ2

4
(e⃗n · σ⃗)2 =

ℏ2

4
e⃗n · e⃗n =

ℏ2

4

we see that the eigenvalues of e⃗n · ˆ⃗S must be ±ℏ
2

for any direction θ, ϕ ! If
you know about the Stern-Gerlach experiment, this explains why it gives the
result it gives.

2 Problem 2
2.) Derive the matrices corresponding to the operators L̂x, L̂y, and L̂z in the
l = 1 angular momentum representation. They satisfy

(Li)mm′ = ℏ⟨l = 1,m|L̂i |l = 1,m′⟩ = ℏ (Mi)mm′
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with M a dimensionless matrix.

You should find the computation of Lz is easiest because the states
|l = 1,m⟩ are eigenstates of L̂z. You may find using the raising and low-
ering operators and the fact that L̂± = L̂x ± iL̂y make your calculations
easier. (Use the result for L̂+|lm⟩ etc.) (i.e, L̂+|10⟩ =

√
2ℏ|11⟩, etc.)

You should find Mx =

 0 1√
2

0
1√
2

0 1√
2

0 1√
2

 My =

 0 − i√
2

0
i√
2

0 − i√
2

0 i√
2

0

 and

Mz =

 1 0 0
0 0 0
0 0 −1

.

Note that because the L̂z eigenvalues are ℏ, 0, and −ℏ, we have

(Mz − 1)Mz (Mz + 1) = 0

⇒ Mz

(
M2

z − 1
)
= 0

or M3
z = Mz

But since this is true for any direction, we have M3
i = Mi.

Indeed, just like we argued about spin 1
2

above, we should have
(
e⃗n · M⃗

)3

=(
e⃗n · M⃗

)
with e⃗n = (sinα cos β, sinα sin β, cosα). You now will show this.

First compute

e⃗n · M⃗ =

 cosα 1√
2
sinαe−iβ 0

1√
2
sinαeiβ 0 1√

2
sinαeiβ

0 1√
2
sinαeiβ − cosα

 ,

Then compute
(
e⃗n, M⃗

)2

and
(
e⃗n · M⃗

)3

to verify(
e⃗n · M⃗

)3

=
(
e⃗n · M⃗

)
.
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Use this result to show that

exp[iv⃗ · M⃗ ] =
∞∑
n=0

(i)n

n!
|v|n

(
e⃗v · M⃗

)n

= 1+ i sin |v|
(
e⃗σ · M⃗

)
+ (cos |v| − 1) | e⃗v · M⃗

)2

,

with e⃗v =
v⃗
|v| = (sinα cos β, sinα sin β, cosα).

This is another case where we can explicitly compute the exponential of a
matrix. If you wish to try, it does not work for any higher angular momentum.

3 Problem 3
3.) Using what you know about exponentials of operators eÂeB̂ show that,
in general, we have

eiv⃗·σ⃗eiv⃗
′·σ⃗ ̸= ei(v⃗+v⃗′)·σ

Under what circumstances are they equal (this will be a relation between v⃗
and v⃗′)?

Hint : Consider BCH for Pauli matrices; do not try to multiply the ma-
trices for eiv⃗·σ⃗ and eiv⃗

′·σ⃗.

4 Problem 4
4.) Working with the l = 1 angular momentum matrices, compute e−iθMzMie

iθMz .
Use the Hadamard relation (which holds for matrices). Note that the commu-
tators never terminate, but they do eventually repeat in a pattern. Determine
what the pattern yields in terms of trig functions.

5 Problem 5
5.) Consider the symplectic group algebra
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[K0, K±] = ±K± [K+, K−] = −2K0

This is the same as the SU(2) algebra, but there is a minus sign on the K0

operator.

Verify that K+ =

(
0 0
−1 0

)
K− =

(
0 1
0 0

)
and K0 =

1
2

(
−1 0
0 1

)
satisfy the above algebra.

Compute exp (−ξK+ + 2iηK0 + ξ∗K−), where ξ and η are complex num-
bers.
Hint : First compute (−ξK+ + 2iηK0 + ξ∗K−)

2 and use that result to sim-
plify your work. Review hyperbolic functions if the power series are unfamil-
iar. Your final result will have the form(

K∗ λ∗

λ K

)
(K and λ are functions of ξ and η)

Factorize this to show the exponential disentangling identity for the sym-
plectic group given by

exp [−ξK+ + 2iηK0 + ξ∗K−] = e−
λ

K∗K+e−2 lnK∗K0e
λ∗
K∗K− .

6 Problem 6
6.) In lecture 2, we derived the the following simplified BCH formula

eÂeB̂ = eÂ+B̂+ 1
2
[Â,B̂]+ 1

12
[Â,[Â,B̂]]+ 1

12
[B̂,[B̂,Â]],

which is exact if
[Â, [Â, [Â, B̂]]] = 0

[B̂, [Â, [Â, B̂]]] = 0

[Â, [B̂, [B̂, Â]]] = 0

[B̂, [B̂, [B̂, Â]]] = 0.
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We want to re-express this in a different form.

Let X̂ = Â and Ŷ = B̂ + 1
2
[Â, B̂]

Then
Â = X̂ and B̂ = Ŷ − 1

2
[Â, B̂]

= Ŷ − 1

2

[
X̂, Ŷ − 1

2
[Â, B̂]

]
= Ŷ − 1

2
[X̂, Ŷ ] +

1

4
[X̂, [X̂, Ŷ ]]

since higher-order terms vanish.

Rearrange the BCH formula to its equivalent form

eX̂eŶ e−
1
2
[X̂,Ŷ ]e−

1
3
[Ŷ ,[Ŷ ,X̂]]e

1
6
[X̂,[X̂,Ŷ ]]

= eX̂+Ŷ

(show your work, and recall [X̂[X̂, Ŷ ]] and [Ŷ , [Ŷ , Ẋ]] commute with every-
thing.)

Now consider the time evolution of a particle mowing in a linear potential
with

Ĥ =
p̂2

2m
+ Fx̂ (a gravitational potential)

The time evolution operator is e−iĤt = e−it[ p̂
2

2m
+F x̂]. Using the notation from

earlier in the problem, pick X̂ = −it p̂2

2m
Ŷ = −itF x̂ , with [x̂, p̂] = iℏ. Use

the BCH formula you derived above to compute a factorized form of e−iĤt.
Your answer will have four factors in it. Be careful. The order of the factors
matters.
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