
HW2

1 Bogliubov transformation
a.) Consider a Hamiltonian of the form

Ĥ =
D1

2

(
â†â† + ââ

)
+
D2

2

(
â†â+ ââ†

)
+D3

with D2 > D1 > 0. Here â and â† are simple harmonic oscillator raising and lowering operators with[
â1â

†] = 1. Determine an analytic formula for the energy levels in terms of D1, D2, D3 and integers.
Hint: Consider a new set of raising and lowering operators Â = â cosh θ + â† sinh θ and Â† =

â† cosh θ+â sinh θ. Verify that
[
Â, Â†

]
= 1 and then find a way to pick a θ such that Ĥ = C1Â

†Â+C2.
From this form, you should be able to read off the spectrum.

b.) Consider our squeezed state
Ŝ(ξ, η)|0⟩.

Show that there is a linear combination

Â = â coshϕ+ â† sinhϕ

for some ϕ such that Â annihilates the squeezed state:

ÂŜ(ξ, η)|0⟩ = 0

This means that we can think of the squeezed vacuum as the ground state of a Hamiltonian of
the form C1Â

†Â+ C2. You need to find ϕ as a function of ξ and η.

Note that ϕ is generically complex and you can write the answer in terms of inverse functions.

2 Simple harmonic oscillator wavefunction in momentum space
a.) Repeat the derivation of the wavefunctions for the simple harmonic oscillator, but now in mo-
mentum space. First, verify that |p⟩ = ei

px̂
ℏ |p=0⟩.

Second, define
ϕn(p) = (i)n⟨p|n⟩

= (i)n
1√
n!
⟨p=0|e− i

ℏ ipx̂
(
â†
)n |0⟩.

Use operator methods to find the wavefunction, which looks schematically similar to (polynomial in
p) times exp (polynomial in p)

b.) When computing the wavefunction in position space, we argued we needed to convert the
p̂ operator in the exponent into an x̂ operator, so it can annihilate against ⟨x=0|. We did this by
breaking the exp

(
i
ℏxp̂

)
into an exp(â†) and exp(â) factors, moved the exp(â) factor to the right

where it annihilated against |0⟩. Then introduced a new exp(â) factor and moved to the left, finally
combining with exp(â†)to get exp(x̂). We can shorten the derivation by introducing the correct exp(â)
factor on the right acting on |0⟩ (multiply by one trick) move it to the left and combine with the
exp(p̂) factor to make an exp(x̂) factor. Find the correct exp(αâ) factor to introduce on the right
and show the steps needed to verify that

ψn(x) =
1√
n!
e−

mw0x2

2ℏ ⟨x=0|

(
a† +

√
2mw0

ℏ

)n

|0⟩

en route to finding the position wavefunction.
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3 Displacement operator
Consider an arbitrary position translation followed by a momentum translation:

exp

(
i

ℏ
p0x̂

)
exp

(
− i

ℏ
x0p̂

)
.

Combine both operators into one single exponent and replace x̂ and p̂ in terms of the â and â†

operators to rewrite the operator as
D(α)eiϕ.

Determine α and ϕ in terns of x0 and p0. Since the overall factor eiϕ plays no role in wavefunctions,
we can drop it when constructing the coherent state

D(α)|0⟩ = |α⟩

How does the state change if we translate momentum first and then translate position?

4 Uncertainty in coherent and squeezed states
a.) When examining the general coherent states as a function of time, we found

e−iĤtD(α)|0⟩ = e−i
ω0t
2

∣∣αe−iω0t
〉

= e
−iω0t

2 D
(
αe−iω0t

)
|0⟩.

Compute the expectation value of x̂ and p̂ as functions of time along with (∆x)αe−iω0t and (∆p)αe−iω0t .
Show that the system is always in a minimum uncertainty state. Explain how the uncertainty in
position and momentum change with time. Express your results in terms of x0 and p0, using the α
you found in problem 3.

Recall: (∆Ô)2ψ = ⟨ψ|Ô2|ψ⟩ − ⟨ψ|O|ψ⟩2

b.) For the squeezed vacuum (not the displaced squeezed vacuum), we saw that

e−iĤtŜ(ξ, η)(0) = e−i
ω0t
2 Ŝ

(
ξe−2iω0t, η)|0⟩

=
∣∣ξe−2iω0t, η

〉
Pick ξ = reiϕ and η = 0 and determine the expectation value of x̂ and p̂ as functions of time along
with (∆x)ξe−iω0t,η=0 and (∆p)ξe−iω0t,η=0. Show that ∆x∆p = ℏ/2. Explain how ∆x and ∆p vary
with time.

5 Factorization method for the particle in a box
a.) In class, we showed the original Schrödinger factorization method for a particle in an infinite
square well. Schrödinger described this as "shooting sparrows with artillery". We can proceed in
another fashion.

Take the potential to be zero between −L
2 ≤ x ≤ L

2 . Consider the lowering operator

Âk =
1√
2m

(
p̂− iℏk tan(kx̂)

)
.

Show that Ĥ = Â†
kÂk + Ek, where you need to determine Ek.

Now, consider increasing k. Starting from k = 0, we see that Ek increases until k reaches π
2 .

This is the same solution we examined in class. But now, for excited states, instead of using the
Sctrödinger factorization method again, lets just consider increasing k further. The Ek continues to
increase, but we will find that when tan kL

2 = ∞ again, we find another excited state and so on. The
idea is that we increase k until each time tan kL

2 diverges. This condition coincides with ψ
(
±L

2

)
= 0.
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Verify that the energies and wavefunctions are given by the well-known results for the particle in
a box.

b.) Now consider a potential that is finite

V (x) =

{
−V0 |x| ⩽ L

2

0 |x| > L
2

for |x| ⩽ L
2 . Use Ak = 1√

2
(p̂− iℏk tan(kx̂)) and

for |x| ⩾ 1
2 use Ak = 1√

2m
(p̂± iℏK) (decide whether + or − for x < −L

2 and x > L
2 ).

Let ϕ = kL
2 =

√
2m(V0+E)

ℏ2
L
2 , κ =

√
− 2mE

ℏ2 and ϕ0 =
√

2mV0

ℏ2
L
2 (recall E<0 for bound states). Use

the requirement that Âk is continuous at x = ±L
2 , to find a transcendental equation that determines

a valid solution (this requirement comes from conservation of probability current). Note that any k
value that satisfies this equation yields a valid solution.

Determine the wavefunctions (unnormalized).
This yields all of the even solutions. One can also find the odd ones but I won’t ask you to.
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