
PHYS 5002: Homework 6

1 Momentum space hydrogen wavefunctions
In class, we derived an identity for the hydrogen energy eigenfunction in a form reminiscent of the
position wavefunction:
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a.) We want to look at
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Recall L3
0 = 1 and choose P 1

n(r̂x, r̂y, r̂z) =
√

3
4π r̂α which is a p-wave state. So,
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for α = x, y, or z.

Compute ⟨px, py, pz|ψ21⟩norm = ψ21(px, py, pz) recalling that
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Use this to rewrite ⟨p|r̂x|ϕ2⟩ =
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Then, use the commutator [p̂α, r̂] = −iℏ r̂α
r̂ to show that
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Now, one last trick is needed: Write r̂ =
∑

α
r̂αr̂α
r̂ and replace r̂α

r̂ |ϕ2⟩ = iℏ
2a0

p̂α |ϕ2⟩ etc. Note further
that you should calculate ⟨p|r̂|ϕ2⟩ separately and substitute the result into the final answer. You will
end up needing to compute ⟨p|ϕ2⟩, which can be done similar to how we did this in Lecture 11.
Finish the problem to compute ψ21(p). You do not need to evaluate ⟨0p|ϕ2⟩.
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Calculate ψ20(p) using the same techniques as above.
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2 Comparing different perturbation theories

Using Ĥ = Ĥ0 + V̂ where Vnm =
〈
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we have the non-degenerate perturbation theory through
fourth order is
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and last but not least,
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Now, take Ĥ0 = p̂2

2m + 1
2kx̂

2 and V̂ = 1
2∆kx̂

2

a.) Compute En exactly, and Taylor expand in a series in ∆k through fourth order in ∆k.

b.) Compute En through fourth order in V̂ using the above formula for Rayleigh-Schrödinger per-
turbation theory.

c.) Compute En to second in Wigner-Brillouin perturbation theory for the ground state only.

d.) Plot E(second order RS), E(fourth order RS), E(second order WB), and the Taylor series through
fourth order for 0 ≤ ∆k

k ≤ 3 (for the ground state only). Comment on the quality of the different
approximations.

3 Isotropic harmonic oscillator
Consider the isotropic simple harmonic oscillator:
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p̂2x + p̂2y + p̂2z
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a.) Using the factorization method in Cartesian coordinates, find the energy eigenvalues.

b.) Rewrite
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and find the eigenvalues using the factorization method in spherical coordinates. Recall
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Verify they are the same as those found in (a).

HINT: Use

B̂†
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(
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[
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with both α and β both nonzero.

c.) Plot the energy levels for discrete values of l.
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4 Perturbed spherical harmonic oscillator
a.) Find the ground state wavefunction (use either Cartesian or spherical coordinates).

b.) Add a perturbation V̂ = 1
2∆kx̂

2. The ground state is non-degenerate. Compute Egs through
second order in Rayleigh-Schrödinger perturbation theory.

c.) Compute the energy in the Cartesian basis and compare to the perturbative energy.
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