
Phys 506 lecture 1: Spin and Pauli matrices

This lecture should be primarily a review for you of properties of spin one-half. I
do suspect that some of the identities derived here, especially the exponential disen-
tangling identity, will be new for you.

1 Spin operators and states
Recall the spin operators and eigenstates. The states | ↑; z⟩ and | ↓; z⟩ are eigenstates
of Ŝz, which satisfy

Ŝz| ↑; z⟩ = ℏ
2
|q; z⟩

Ŝz| ↓; z⟩ = −ℏ
2
| ↓; z⟩

}
eigenstates.

Next, we discuss the raising and lowering operators. Define Ŝ+and Ŝ−to connect
these states

Ŝ+ |↑; z) = 0, Ŝ+| ↓; z⟩ = ℏ| ↑; z⟩
Ŝ−| ↑; z⟩ = ℏ| ↓; z⟩, Ŝ− |↓; z⟩ = 0.

Compute their commutators by acting the operator each, in turn, onto the states.
Note that the commutator is computed via the action on the states themselves, using
the above rule. We cannot determine them any other way. We have(

Ŝ+Ŝ− − Ŝ−Ŝ+

)
| ↑; z⟩ = ℏ2| ↑; z⟩ = 2ℏŜz| ↑; z⟩(

Ŝ+Ŝ− − Ŝ−Ŝ+

)
| ↓; z⟩ = −ℏ2| ↓; z⟩ = 2ℏŜz| ↓; z⟩

So
[
Ŝ+, Ŝ−

]
= 2ℏŜz

Similarly: (
ŜzŜ+ − Ŝ+Ŝz

)
| ↑; z⟩ = 0 = Ŝ+| ↑; z⟩(

ŜzŜ+ − Ŝ + Ŝz

)
| ↓; z⟩ = ℏ2| ↓; z⟩ = ℏŜ+| ↓; z⟩

So
[
Ŝz, Ŝ+

]
= ℏŜ+ . You can verify yourself that

[
Ŝz, Ŝ−

]
= −ℏŜ− .

Please ensure that you are comfortable calculating the commutators in this way, by
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acting the operators onto the states in the order provided and determining what the
final result is. Because we acted them on all the states in our Hilbert space, we can
use this to determine the commutation rule for the operators themselves. This is how
we obtained our summary equations.

These three commutation relations are the SU(2) algebra.

2 Cartesian spin operators

Next, we move on to determine the Cartesian spin operators. If we define Ŝx =
1
2

(
Ŝ+ + Ŝ−

)
and Ŝy = 1

2i

(
Ŝ+ − Ŝ−

)
, then Ŝ+ = Ŝx + iŜy and Ŝ− = Ŝx − iŜy. The

algebra of the Cartesian spins follows:[
Ŝx, Ŝy

]
=

1

4i

[
Ŝ+ + Ŝ−, Ŝ+ − Ŝ−

]
=

1

4i

[[
Ŝ+, Ŝ+

]
−
[
Ŝ+, Ŝ−

]
+
[
Ŝ−, Ŝ+

]
−
[
Ŝx, Ŝ

]}
=

1

4i

[
−2ℏŜz − 2ℏŜz

]
= iℏŜz

where we used the commutation relations we already knew to evaluate them.
You can verify (and should) that we have[

Ŝi, Ŝj

]
= iℏ

∑
k

εijkŜk

which is the standard form for angular momentum commutators. Here, εijk is the
completely antisymmetric tensor, which satisfies ε123 = ε231 = ε312 = 1 and ε132 =
ε321 = ε213 = −1, and all others vanish. Note we freely use 1, 2, 3 or x, y, z. It should
be clear from the context what we mean.

From this relation, we can compute the commutation relation of the total spin
squared with the Cartesian angular momentum operators. We have[

Ŝ2, Ŝj

]
= 0.

Proof: Ŝ2 =
∑

i ŜiŜi so[
Ŝ2, Ŝj

]
=
∑
i

[
ŜiŜi, Ŝj

]
=
∑
i

(
Ŝi

[
Ŝi, Ŝj

]
+
[
Ŝi, Ŝj

]
Ŝi

)
= iℏ

∑
i

∑
k

(
ŜiεijkŜk + εijkŜkŜi

)
= iℏ

∑
ik

εijk

(
ŜiŜk + ŜkŜi

)
.

The claim is that this is zero. To see this let i→ k′ and k → i′

= iℏ
∑
i′k′

εk′ji′
(
Ŝk′Ŝi′ + Ŝi′Ŝk′

)
= iℏ

∑
i′k′

(−εi′jk′)
(
Ŝi′Ŝk′ + Ŝk′Ŝi′

)
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Since εijk = −εkji. Now drop the primes

= −iℏ
∑
ik

εijk

(
ŜiŜk + ŜkŜi

)
Anything equal to its negative must vanish, so

[
Ŝ2, Ŝj

]
= 0.

Let’s compute Ŝ2|σ; z⟩ with σ =↑ or ↓. First, we express the square of the spin in
the spherical basis, because we know what those operators do when acting on states:

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

1

4

(
Ŝ+ + Ŝ−

)2
− 1

4

(
Ŝz − Ŝ−

)2
+ Ŝ2

z

=
1

2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
+ Ŝ2

z

Then we evaluate directly on states. So, acting on the up spin gives

Ŝ2| ↑; z⟩ = 1

2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
| ↑; z⟩+ Ŝ2

z | ↑; z⟩

=

(
1

2
ℏ2 +

1

4
ℏ2
)
| ↑; z⟩ = 3

4
ℏ2| ↑; z⟩

And acting on the down spin gives

Ŝ2(↓; z) = 1

2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
| ↓; z⟩+ Ŝ2

z | ↓; z⟩

=
3

4
ℏ2(↓; z)

as well. Hence, |σ; z⟩ is an eigenstate of both Ŝ2 and Ŝz !

3 Matrix representation of spin
We next look at the matrix representations of spin. Assume we have an arbitrary
superposition of states

|ψ⟩ = α| ↑; z⟩+ β| ↓; z⟩

We let the column vector
(
α
β

)
denote the state |ψ⟩. The operators Ŝi are represented

by two-dimensional matrices in this space. For example

Ŝz | ↑̂; z⟩ = ℏ
2
| ↑; z⟩

Ŝz |↓; z⟩ = ℏ
2
| ↓; z⟩

⇔ ℏ
2

(
1 0
0 −1

)(
1

0

)
=

ℏ
2

(
1

0

)
and

ℏ
2

(
1 0
0 −1

)(
0

1

)
= −ℏ

2

(
0

1

)
.

The matrix representing the operator is

Mσσ′ = ⟨σ; z| Ŝi |σ′; z⟩

which includes 4 numbers for the matrix from the different choices of σ and σ′.
Let’s compute the matrix for Ŝy
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Sy
σσ′ = ⟨σ; z|Ŝy |σ′; z⟩ = 1

2i
⟨σ; z|Ŝ+ − Ŝ− |σ′; z⟩

σ′ =↑:
(
Ŝ+ − Ŝ−

)
|↑; z⟩ = −ℏ |↓; z⟩ ⇒ Sy

↑↑ = 0, Sy
↓↑ =

iℏ
2

σ′ =↓:
(
Ŝ+ − Ŝ−

)
|↓; z⟩ = ℏ| ↑; z⟩ ⇒ Sy

↑↓ = −iℏ
2
, Ŝy

↓↓ = 0.

So Ŝy =
ℏ
2

(
0 −i
i 0

)
. Similarly, we have Ŝx = ℏ

2

(
0 1
1 0

)
and Ŝz =

ℏ
2

(
1 0
0 −1

)
.

We call σi the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

Note that σ2
i =

(
1 0
0 1

)
⇒ S2

σσ′ = ℏ2
4
× 3×

(
1 0
0 1

)
These matrices also anticommute. To see this go back to our spin commutators

ŜxŜy − ŜyŜx = iℏŜz.

Multiply on left by Ŝx and on right by Ŝx

Ŝ2
xŜy − ŜxŜyŜx = iℏŜxŜz

ŜxŜyŜx − ŜyŜ
2
x = iℏŜzŜx.

Now substitute in the Pauli matrices

ℏ3

8

[
σ2
xσy − σxσyσx

]
= i

ℏ3

4
σxσz

ℏ3

8

[
σxσyσx − σyσ

2
x

]
= i

iℏ3

4
σzσx.

Add (and recall σ2
x = 1 ):

ℏ3

8
[σy − σy] = i

ℏ3

4
(σxσz + σzσx)

0 = σxσz + σzσx

and it is obvious this holds for other permutations too.

Hence, we have derived that

σiσj =
1

2
[σiσj + σjσi + σiσj − σjσi]

=
1

2
δij × 21+

1

2
i2εijkσk

or σiσj = δij1+ iεijkσk

This last equation is an important relation to remember about the product of two
Pauli spin matrices.
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Another interesting identity is the product of all 3

σxσyσz = iε123σzσz = i1

σxσyσz = i1.

Any 2×2 matrix can be expressed in terms of the identity and the 3 Pauli matrices.
This is called completeness over the space of 2× 2 matrices.

Check: α1+ βσx + γσy + δσz =

(
α + δ β − iγ
β + iγ α− δ

)
So to find

(
a b
c a

)
, we set a = α + δ b = β − iγ c = β + iγd = αδ

or α = a+d
2

β = b+c
2

γ = i
2
(b− c) and δ = a−d

2
.

We often write this as M = α1+ v⃗ · σ⃗ v⃗ =
(
b+c
2
, i
2
(b− c), a−d

2

)
.

4 Working with spin matrices
Let’s get some practice working with these objects

(A⃗ · σ⃗)(B⃗ · σ⃗) =
∑
ij

AiBjσiσj

=
∑
ij

AiBj (δij1+ iεijkσk)

= A⃗ · B⃗1+ iεijkAiBjσk

= A⃗ · B⃗1+ i(A⃗× B⃗) · σ⃗

Note that if A⃗ is parallel to B⃗, then (A⃗ · σ⃗)(B⃗ · σ⃗) = A⃗ · B⃗1. This identity is a useful
one to remember.

Next, we evaluate the matrix exponential:

exp[iv⃗ · σ⃗] =
∞∑
n=0

(i)n

n!
(v⃗ · σ⃗)n.

First separate out into even and odd powers

eiv⃗·σ⃗ =
∞∑
n=0

(−1)n

(2n)!
(v⃗ · σ⃗)2n + i

∞∑
n=0

(−1)n

(2n+ 1)!
(v⃗ · σ⃗)2n+1.

But recall (v⃗ · σ⃗)(v⃗ · σ⃗) = v21 so

eiv⃗·σ⃗ =
∞∑
n=0

(−1)n

(2n)!

(
v2
)n

1+ iv⃗ · σ⃗
∞∑
n=0

(−1)n

(2n+ 1)!

(
v2
)n

eiv⃗·σ⃗ = cos |v|1+ i
v⃗ · σ⃗
|v|

sin |v|
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This is called the generalized Euler identity.
Let’s compute the similarity transformation of a Pauli matrix (corresponding to a

rotation)
eiv⃗·σ⃗σje

−iv⃗·σ.

In general, such terms can involve an infinite series, as we will show in a later lecture
via the Hadamard lemma, but in this case, we can explicitly calculate it. Just use our
generalized Euler identity for each exponential, followed by our product rule for pairs
of Pauli matrices:

eiv̄·σ⃗σje
−iv⃗·σ⃗ =

(
cos |v|1+ i

v⃗ · σ⃗
|v|

sin |v|
)
σj

(
cos |σ|1− i

v⃗ · σ⃗
|v|

sin(v)

)
= cos2 |v|σj − i

cos |v| sin |v|
|v|

(σj v⃗ · σ⃗ − v⃗ · σ⃗σj) +
sin2 |v|
|v|2

v⃗ · σ⃗σj v⃗ · σ⃗

= cos2 |v|σj − i
cos |v| sin |v|

|v|
∑
i

[σj, σi] vi +
sin2 |v|
|v|2

∑
ik

vivkσiσjσk

= cos2 |v|σj +
cos |v| sin |v|

v

∑
ik

2εjikviσk +
sin2 |v|
|σ|2

∑
ik

vivkσiσjσk

But
∑

ik vivkσiσjσk =
∑

ik vivk [δij1+ iεijlσl]σk. So, we have that

∑
ik

vivkσiσjσk = vj v⃗ · σ⃗ + i
∑
ikl

vivkεijl

(
�
�>
0

δlk + iεlkmσm

)
= vj v⃗ · σ⃗ −

∑
iklm

vivkεijlεlkmσm

= vj v⃗ · σ⃗ −
∑
ikm

vivk (δikδjm − δimδjk)σm

= vj v⃗ · σ⃗ − v2σj + v⃗ · σ⃗vj
So that

eiv̄·σ⃗σje
−iv⃗·σ⃗ = cos2 |v|δj + 2

cos |v| sin |v|
|v|

(v⃗ × σ⃗)j +
sin2(v)

|v|2
(
2v⃗ · σ⃗vj − v2σj

)
.

5 Exponential disentangling
Our last topic is on exponential disentangling. This is an identity most have not seen
before. It is derived by factorizing the exponential of a combination of Pauli matrices

into a product of three special Pauli matrices. First note that σ+ = σx+iδy =

(
0 2
0 0

)
so
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exp (ασ+) = 1 + ασ+ +
1

2
α2

(
�
��
0

σ2
+

)
+ · · ·

=

(
1 2α
0 1

)
exp (ασ−) =

(
1 0
2α 1

)
That is, the exponential of raising or lowering Paulis is given by a sum of just two
terms. Now, let’s consider the following exponential

exp(v⃗ · σ⃗) =

(
cos |σ|+ i vz|σ| sin |v|

(
i vx|v| +

vy
|v|

)
sin |v|

( ivx|v| −
vy
|v|) sin |v| cos |v| − i vz|v| sin |v|

)

We want to re-write it as exp[ασ+] exp [βσz] exp [γσ−], so we have(
1 2α
0 1

)(
eβ 0
0 e−β

)(
1 0
2γ 1

)
=

(
eβ 2αe−β

0 e−β

)(
1 0
2γ 1

)
=

(
eβ + 4αγe−β 2αe−β

2γe−β e−β

)
.

Comparing to the exponential, we have

cos |v|+ i
vz
|v|

sin |v| = eβ + 4αγe−β(
i
vx
|σ|

+
vy
|v|

)
sin |v| = 2αe−β(

i
vx
|v|

− vy
|v|

)
sin |v| = 2γe−β

cos |v| − i
vz
|v|

sin |v| = e−β,

First note that eβ
(
1 + 4αγe−2β

)
= 1

cos |v|−i vz|v| sin |v|

(
1 + sin2 |v|(−v2z−v2y

|v|2

)
)

=
cos |v|+ i vz|v| sin |v|

cos2 |v|+ v2z
|v|2 sin2 |v|

(
1 + sin2 |v|

(
v2z
|v|2

− 1

))
= cos |v|+ i

vz
|v|

sin |v|

So if we solve the bottom three equations, the top automatically holds! This then
gives us
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β = − ln

[
cos |v| − i

vz
|v|

sin |v|
]

(1)

α =
1

2

(
ivx
|v|

+
vy
|v|

)
sin |v|

cos |v| − ivz
|v| sin |v|

(2)

γ =
1

2

(
ivx
|v|

− vy
| v′

)
sin |v|

cos |v| − i vz|v| sin |v|
(3)

This identity is called the exponential disentangling identity and it is an important
one.

An important special case is when vx = vz = 0 , then

β = ln sec vy α =
1

2
tan vy γ = −1

2
tan vy

This is your first taste of exponential disentangling. We will see more of it soon.
What is amazing about exponential disentangling is that is holds for any angular

momentum, not just spin one half. But, we will have more to say about that later.
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