Phys 506 Lecture 11: Cartesian hydrogen

1 Harmonic polynomials

We will solve hydrogen in Cartesian space without using angular momentum. To start, we must
use the so-called harmonic polynomials, which are homogeneous polynomials in {r.,r,,r.} of
degree [ that satisfy V2P} (r,,r,,7.) = 0. In terms of operators, they have two properties:

[fpr,P,i (fx,fy,fz)] = —iHIPL (g, 7y, 7)) (1)

and

> [Bas [Bas Ph (s 72)] | = 0. (2)

The first expression establishes that the harmonic polynomial is a homogeneous polynomial of
order I. The second that the harmonic polynomial satisfies Laplace’s equation, or V2P = 0. Ex-
amples: 1,7y, 'y, 7o, 72 — T, iy, FyPe, P2y, and 72 + 72 — 272, These are the s, p, and d spherical
harmonics in a Cartesian basis. Note that the harmonic polynomials have definite /, but need not
be eigenvectors of L., and this makes them different from the |l, m) states. In particular,

1 N s
p% (Tza Ty, Tz)

A
is a function only of cos 0, sin 0, coqub and sin qg This means it commutes with p,, which can be
established directly by using property (1).

2 Cartesian factorization

The Cartesian factorization of H was discovered by Ioffe and coworkers in 1984, as part of the
supersymmetric quantum mechanics craze ushered in by Ed Witten. Let’s see how it works. The
claim is that we can rewrite the Coulomb Hamiltonian in terms of the sum of three terms, each of
the form of our conventional factorization. This looks like

Ai 62 R .
H()\) = g—ﬂ abvin > ALWAL(N) + By

with A,(\) = \/% (ﬁa — Z—f”'—“‘) and E\ = Note that the factor \? in the denominator

2
2u Aag T - 2aeo)\2 :
means the factorization holds for all ), but the physical Hamiltonian corresponds to A = 1.
Proof:
)

IR 1 (4 ik [. 7q h 2 Py I R
AN AN = — <pa_)ﬂo [ a)f:| +)\2a%f72 but Pa, = =—zh;+zhf—3
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So
~9 2 2 a2 2 22
. - P h* 1 h* 7 hs 7
AT (N AL(N) = 2% — = S
a(N)4a(d) 2 2uag\ t + 2uag\ 73 + 2uag\? 72
Now, sum over « and recall 3 72 = 72, so

AN A _ P2 Py P2 3h 1 B 1 %
Za Aa()‘)Aa()‘) — 2u + ﬁ + 21 2pagh T + 2pao + 2pai?’
Using u% = ¢?, we get
o 2 9 2 2 2
px py pz € € n €
Po Py Pz ¢, @ _p__ °
24 + 24 * 2 AP + 2a9\?2 A 2a9\2

So we have established that

H(N\) =Y AL(N)AL(N) + By

This implies that the ground state satisfies A,(A=1)[¢y) = 0 for « = x,y, 2 which can be

rewritten as )
A ihrt - e

Pa |17Z}1> - 74 ’¢1> and Egs = E)\:l - —_—

apg r 2(10

As before we use 1 to denote the states of the original Hamiltonian, and because the physical one
has A = 1, we use the 1 subscript. Similarly, the ground states of the auxiliary Hamiltonians satisfy

) ) ih 7y - e’
AaN)[62) =0= palda) = 17 16a) and By = —5 .

The full derivation of the Cartesian Hamiltonian approach is quite technical and we will just tell
you some results, while some others will be homework problems.

3 Perpendicular kinetic energy

We start by defining the "perpendicular" kinetic energy via

Lo o o L o 7 ; Lo o o .o
o (P2 +p; +p7) = gl TIL=Ti=5o (5 + D + D2 — Py) -
This “perpendicular” kinetic energy should be equal to L? /72, but we do not need that fact in our

work (although it can be useful for intuition about how to proceed at times). One critical identity
you will show on the HW is that

R+ 1)

2/”;2 P}ZL (frvfy’ 722) ‘¢/\> :

TP} (7yy Ty 72) | d2) =

R21(1 . A A A .
LQEL;D annihilates P,lZ (P, Py, 72) |@r) and that P}L (T, Ty, T2) | ¢>\>

Aswe said above, this implies T -

has total angular momentum [. The latter comes from T, = 25;2 or fJ2PfL (Pay Py, T2) | OA) =
R2L(L+ 1) P (Pyfy, 72) |0a) -
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4 Intertwining

Intertwining is also complex and just sketched here, with more details in the homework, using the

ladder operators we had before B,.(\) = \/% (ﬁr —ih (L A)) and the appropriate commuta-

20 ap\ T
tion relations. Then we have

o . ~ H2 B2AN+1 2
BINB,(\) + By = Dr  PPAAED &

24 2ui? 7
I _ 2 RPN+ 1)(A+2) 2
ByNBIO) + By = 20 _
( ) r( )+ A+1 2IU'+ 2/1722 P
This then implies that
- - - A RAN+1) -
H(\=1)=BI{(\NB,N+T, - ———+E
(A=1) = BIB,(N) + T~ 0 4 B
. - - . RPN+ 1) (A +2 ~
A=) = BBy + 7, - PRI g
To set up intertwining, we compute
L RA(I+1) 4 2ih [ KA1 +1)
T, ————= B(\)| =- T ————7].
|: 1 2/J,TA‘2 ) r( ) \/ﬂf 1 2/“22
Proof: ) .
A RE(Il+1) 1 [, . 1 A A L
T, — r+ih | — — < d T\ =—
[ . 2ui? 7 \/2p [p o (Mo 7“)” W T P
BEINR a1 S B U (U OB I
2 24 f27pr 2% o f,27pr
_2n (L2 RA(I+1)\ 26k 7 B2l +1)
o V2ur \ 2u? 27?2 2 + 272 '
So (Zfl — %) B,t()\) = (B;[()\) — \/22%7) (fll — EQZZSS;I)). This means we can move 7| —
f’??lfj;” through B! with a shift being applied to Bl

We will show that [1,,,) = Bi(1)Bl(1+1)--- Bi(n— 2)rn =Pl (fy, 7y, 72) | ¢n) is an eigenstate
of the hydrogen Hamiltonian.
On the HW you will show intertwining;:

n—I[—1
HO=D)BIOBH+1) -+ Bi(n —2) = BI(Q) - Bl(n - 2) (mm T f > - j))
j=1

+{ (B,t(l) - j%) (BI(lJrl) - \;%) (Bj(n—z) _ ;%)

R R R 2
—BI<Z>---BI<n—2>} e
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5 Energy eigenstate

To show our ansatz is an eigenstate, we recall that

(Tl R+

22 ) PP (o, Py, 1) | dn) = 0,

so that

9 n—l—1

HO=1) ) = BIQ) -~ Bl(n = 2) |HO=1) + 725 3 (=) | #"77 By 72) | 00).
j=0

Lin & & .
We can move M to the left because it commutes with p, (after getting rid of 7', ). Also

n—Il—1
1 1
> (n-1) J=n(n—1-1)=Sn-1)n-1-1)={n-1-1)(n+1)s
7=0
9 1
=[n —n—l(l+1)]§
We can write
A p2 it 2. 02 72 72
H(\=1 —N="L4+T — —+ — —-1)— —=<Il(l+1
( )+Mf2 par (n ]) 2H+ L 7 +ur2n( ) ,u/,gg ( + )

annihilate against P} (7 ,7y,7-)

So, we have that

HO=1) [¢h) = BI(1) -+ Bl (n - 2)

Pilz (729577231772,2) |:p'r' e? h2 (n—l)} An— 1|¢ >

7l 2u 7
But 2pn—1 _ 5[5 an—l .\ a1
Pt = py [pr, P 4+ ey
= —ih(n — 1)p" 2+ po" ',
= —ih(n — )" %p, — B2 (n — 1)(n — 2)7" 2 + #"71p2 —ih(n — 1)7"2p,
1. -1 -2
=l <pr — 2ih(n — 1) hQ—(n Zgn )> .
So ( )
A Py (Pg, Py, 72)
HO\=1) | ) = BI(1) - Bl (n — 2) =20 1
~2 2 : 2
pr e ihin—1)1 .
ﬂ 7 T; Pr 272 (n(n—1) = (n—=1)(n—=2)) | [¢n)
zh(ﬁ—%) 2(n—1)
because

na nag

h 7o
Paldn) = Q‘"|¢n>=>z»¢¢n>-zh/<1-—>|¢n>
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Then we have that H(A=1)|¢,,) becomes

- - Pl (P, 7y 2 2 hn-—11 R B2
Bl Bi(n— 2T gy f P2 A1l
& 20 F  pag n T

~2 2
A A o A ayan—1 [ Pr €
Bi(l) T BI(” - 2)PflL (Ta:ﬂ"yrz) (. <2M - M) ’¢n>'

H(\=n)

Hence, using the fact that H(\=n)|pn) = En|pn), we find the final result that H(A=1) |[tb,;) =
Just like before, the string of Bi(e) .- B} (n — 2) can get replaced by a Laguerre polynomial. I
will do the algebra for you. We have that the normalized eigenfunction is

\n—l—1 (nag\n—1 n—1)!(n—I-1)! A A A 7 ! T
ot} = (=i) 11 ()" J OO B (o) (25 ) L2 () (@, 216n)

6 Position-space wavefunction

To get the wave function, we take the overlap with (z, y, z| to find (operators are replaced by x, y, )

nag\ " n—Dn—-1-1)P(x,y,z
(@0 ) = (a1 2) =i~ (22 1\/(2 e

() 2 (2 sl
nag n=l=1\ pag P

To obtain (x,y, z | ¢y,), we use the translation operator in spherical coordinates.

ir (A ih
<:E7y7z ’ ¢n> = <0‘ef(pr+?)‘¢n>-

But,
. ) 1 1
Pr |¢n> =ih <7m0 - f) |¢n>
50 ih iR
1 )
. i _ i . |
(pr + B N én) e |¢n)  eigenvector!
This implies that

(@1, 2|dn) = € 70 (0] ).

which gives the position-space wave function, up to a normalization factor.
7 Momentum-space wavefunction
But what we really want is the momentum-space wave function

lb (pzapy7pz) = <pa:7pyapz ’ wnl>




Quantum Mechanics II Lecture 11 PHYS 5002

Here, we are challenged, because |p,, py, p-) is not an eigenstate of p,. Doing the full calculation is
technical and tough, but can be completed. Instead, we look first at how to get the n = 1,1 = 0 case
where we have P} (7,7, 7,) = 1.

010 (P Pyp=) = (P> Py, D= | 1) = <o | = nPafatPyPytpata) gy

_ Z <_> (Op] (pue + pyity + o)™ 1) -

Lookatn=1:
(0p | (p2Tz + pyTy + p272) [t01) -
Recall that p, |¢1) = % 7"7“ ), which implies that
ag ~ ~ A ~
= E <0p‘ r (p:cpz + pyby + pzpz) \¢1)
ap P P PN
= 7-1 (Px <0p‘ [7, D] [¥1) + Dy <0p’ [T,py] Y1) + P2 <0p|[7"7PZH¢>)
ra a R
= tha p| |¢1 Ozpa |pa|¢1>20
N
20p,

So, it vanishes. We will find, in general, all odd powers vanish.
For the general case, consider

(Pafa + Dyfy + paiz)™ =D Y - Zpalmlpagrag “PamTam
a1 Qo
So
<0p| (prz +py72y + pzrz | ¢1 Z me : pam |7§a1 o, |¢1> .

ust as before, we replace 7, 1) = Lip, Y and recognize we have a commutator because
p m 1h g
Pa | 0p) =0, 50

N ” N a() o o A A
(Op] (Patz + pyfy + pafz)™ |th1) = Z Pay " Pam (Op [ral e .ram*17’7p0£m} |th1) -
Oll e 77%%
The commutator acts on 7, and when «; = a,, it gives an iA. Since we get the same result for
each o from j = 1to j = m — 1, we have m — 1 terms. When p,,,, is commuted with 7, it gives
ih*e, so we get

= ag - p Z Daz-pa,, _, (m = 1) (Op| oy -+ Py o |901)

1O —2
. .1
+ ag Z Pa;y - " Pap, <0p‘ Tap * 'ram; |¢1> .
ai1Qm
In the first term, we write # = > =~ —%=— =} = 7, ,—%+ and replace by p,,, , when

acting on [¢1), so

2..2
agP* Y. — R R .
= O St a(m = 1) Op] e+ P 1B )

Z Par ** Pam (Opl [Pay ** Par_ s Do )|¥)

a1-Qm
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from o, —1 case where there are 3 commutators

=~ . .
= a8p2(m —1(m -2+ 3 ) Z Day * " Pam—2 <OP‘T041~"7404m72 ‘ 1/)1>

a1 Om—2

+ ao Z Pa; **Pam—2 <OP‘TA‘O¢1 T fam72 ‘w1>

a1 Qm—2

0 (0p] (X Pafa)™ [t1) = (agp)* (m — 1)(m + 2) (Op] (2, Pata)™ 7 [1).
This implies that all odd powers vanish, since we eventually hitm = 0. Call (0,| (3, pata)™ [¢1) =
Ny,. This then implies that

&
|
&)
|

m + 2)(a0p)2Nm—2
= (m —1)(m +2)(m — 3)m (aop)" Nin—1

m! (5 +1) (aop)™ (0, | 1)

SO/ 77210 (px17py17p2) = Zzozo (_TLZ)QTL @(271)‘(“ + 1) (a‘op)2n <OP ‘ ¢1>

i_oj " (“PY (4140, | ).

Recall that the geometric series is given by 1 2 = 2oneo(=1)"2". Then,
o 1 —1 -
i — — —1)" n—1
0z14+2 (14 2)? Z( )iz
n=0
—- 30
This implies that
- 1
LT (pmapypz) = —2 <0p | ¢1>
normalization constant= ?

8 What an atom really looks like

Why do we care? Because this can be directly measured!

When an e~ scatters off of H, the scattering is proportional to |¢1,(p)|* and the data agree per-
fectly with the calculation

This is called election momentum spectroscopy and was first measured in 1981. It in also called
(e, 2¢) spectroscopy because the "reaction"is e+ H — 2e+H ™, as the fast electron, strips an electron
off of the hydrogen atom. We only see the 1s state in the scattering, because there is no way to
populate other excited states enough that they last in the excited state for enough time that the
experiment can be done.
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Figure 1: Sketch of what an e-2e experiment looks like. The probability distribution for an electron
to be in a specific momentum eigenstate when we scatter off the 1s states of hydrogen looks like
the square of a Lorentzian. It is high at p = 0, and then decays smoothly to zero for higher p. The
experimentally measured data agree well with this result, which has no adjustable parameters.




