
Phys 506 Lecture 12: Addition of angular
momentum

1 Combining independent angular momenta

Suppose we have two angular momenta which are independent and com-
mute with each other, Ĵ1 and Ĵ2. Then we have the following commutation
relations:

[Ĵ1i, Ĵ1j ] = iℏϵijkĴ1k
[Ĵ2i, Ĵ2j ] = iℏϵijkĴ2k
[Ĵ1i, Ĵ2j ] = 0.

We can then define the total angular momentum operator as:

Ĵ = Ĵ1 + Ĵ2.

Then:

[Ĵi, Ĵj ] = [Ĵ1i + Ĵ2i, Ĵ1j + Ĵ2j ] = iℏϵijk(Ĵ1k + Ĵ2k) = iℏϵijkĴk.

We now claim put forth the following claim.

2 Uncoupled basis

Theorem 2.1. The following operators all commute: Ĵ2
1 , Ĵ1z, Ĵ

2
2 , Ĵ2z.

Proof. This is obvious since Ĵ1 and Ĵ2 commute, and [Ĵ2
1 , Ĵ

2
1z] = [Ĵ2

2 , Ĵ2z] =
0.

As a result, we can form eigenstates with the labels |j1,m1, j2,m2⟩ such
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that:

Ĵ2
1 |j1, j2,m1,m2⟩ = ℏ2j1(j1 + 1)|j1, j2,m1,m2⟩,

Ĵ2
2 |j1, j2,m1,m2⟩ = ℏ2j2(j2 + 1)|j1, j2,m1,m2⟩,

Ĵ1z|j1, j2,m1,m2⟩ = ℏm1|j1, j2,m1,m2⟩,
Ĵ2z|j1, j2,m1,m2⟩ = ℏm2|j1, j2,m1,m2⟩.

These states are formed from the tensor product of the states with different
angular momentum. The corresponding operators act on the correspond-
ing states. As an example, wewould have |j1,m1⟩⊗|j2,m2⟩ = |j1, j2,m1,m2⟩,
with the Ĵ1 operators acting on the first state in the tensor product and the Ĵ2
operators acting on the second state. Keeping the tensor product notation
around is unwieldy so we drop it. This first basis is called the uncoupled
basis, because the angular momenta are and remain indeendent.

3 Coupled basis

Theorem 3.1. The following operators also commute: Ĵ2, Ĵz, Ĵ
2
1 , Ĵ

2
2

Proof. We already know:

[Ĵz, Ĵ
2
1 ] = 0, [Ĵz, Ĵ

2
2 ] = 0, [Ĵ2, Ĵz] = 0.

Hence, we need to check [Ĵ2, Ĵ2
1 ] = 0. But we can express Ĵ2 as:

Ĵ2 = Ĵ2
1 + 2Ĵ1 · Ĵ2 + Ĵ2

2 = Ĵ2
1 + 2Ĵ1j · Ĵ2j + Ĵ2

2

But [Ĵ2
1 , Ĵ1j ] = 0which implies [Ĵ2, Ĵ2

1 ] = 0. Similarly [Ĵ2, Ĵ2
2 ] = 0.

As a result, we can also label states by |j,mj , j1, j2⟩ such that:

Ĵ2|j,mj , j1, j2⟩ = ℏ2j(j + 1)|j,mj , j1, j2⟩
Ĵz|j,mj , j1, j2⟩ = ℏmj |j,mj , j1, j2⟩
Ĵ2
1 |j,mj , j1, j2⟩ = ℏ2j1(j1 + 1)|j,mj , j1, j2⟩

Ĵ2
2 |j,mj , j1, j2⟩ = ℏ2j2(j2 + 1)|j,mj , j1, j2⟩

Both representations are completely equivalent and span the whole basis
of states. This however raises the question of how do we convert between
them. In addition, we might also be interested in what the allowed values
are of each label, e.g. given j1 and j2, what values are allowed for j and m.
Hence, we will focus on answering the following two questions.
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4 Relationship between the two bases

Questions.

1. Given j1 and j2, what values of j are allowed?

2. How do I convert between the different bases? The coefficients of the
expansions are called Clebsch-Gordan coefficients.

We will focus first on question (1). Suppose we start with two states,
one with j1 and one with j2, and these values are fixed. Look at the repre-
sentation |j1,m1, j2,m2⟩. We have

Ĵz|j1,m1, j2,m2⟩ = (Ĵ1z + Ĵ2z)|j1,m1, j2,m2⟩ = ℏ(m1 +m2)|j1,m1, j2,m2⟩.

This implies that this representation is an eigenfunction of Ĵz with eigen-
valuemj = m1+m2. In general, this state is not an eigenstate of Ĵ2. Examine
the maximal spin state

|j1,m1 = j1, j2,m2 = j2⟩.

Thenmj = j1+j2 is the maximal value for the z-component of total angular
momentum. So the maximal j we can have is j = j1 + j2. In other words,
this state is also

|j = j1 + j2,mj = j1 + j2, j1, j2⟩
up to a phase. Similarly, the state |j1,m1 = −j1, j2,m2 = −j2⟩ is |j = j1 +
j2,mj = −(j1 + j2), j1, j2⟩ up to a phase.

How do we find the state with j = j1 + j2 − 1? Look at the states with
mj = j1 + j2 − 1:

|j1,m1 = j1 − 1, j2,m2 = j2⟩ and |j1,m1 = j1, j2,m2 = j2 − 1⟩.

These states must have one linear combination which has j = j1 + j2 and
mj = j1 + j2 − 1, and one which has j = j1 + j2 − 1 and mj = j1 + j2 − 1.
How do we find them however? Recall that:

Ĵ−|j,mj , j1, j2⟩ ∝ |j,mj − 1, j1, j2⟩.

So we find this state by hitting with Ĵ−, and the state with j = j1 + j2 − 1 is
orthogonal to this state.

Similarly, if we look atmj = j1 + j2 − 2, there are three states:
m1 = j1, m2 = j2 − 2

m1 = j1 − 1, m2 = j2 − 1

m1 = j1 − 2, m2 = j2
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And we will find the j = j1 + j2 − 2, j = j1 + j2 − 1, and j = j1 + j2 states
in this subspace, and so on.

5 Smallest allowed j value

Now suppose j1 ≥ j2 and the biggest m is j1 + j2. This implies the biggest
j is j = j1 + j2 but the smallest j is not necessarily 0 or 1/2. It is actually
|j1 − j2| = jmin. We can see this illustrated in the following example.

Example 5.1. Consider the case of when j1 = 2 and j2 = 1. We can draw
out all values and scenarios as follows:

m m1 m2 j

3 2 1 j = 3

2 2 0 j = 3, 2
1 1

1 2 -1 j = 3, 2, 1
1 0
0 1

0 1 -1 j = 3, 2, and 1. No 0!
0 0
-1 1

-1 0 -1 j = 3, 2, 1
-1 0
-2 1

-2 -1 -1 j = 3, 2
-2 0

-3 -2 -1 j = 3

We can also do the following counting check. The total number of states
in |j,m, j1, j2⟩ representation is given by

∑jmax
j=jmin

(2j+1). Using that identity∑m
j=0 j = (n+ 1)n/2, we get:

jmax∑
j=jmin

(2j + 1) = 2

(
(jmax + 1)jmax

2
− jmin(jmin − 1)

2

)
+ jmax − jmin + 1

= (j1 + j2 + 1)(j1 + j2)− jmin(jmin − 1) + j1 + j2 − jmin + 1

However, we also know that in the |j1,m1, j2,m2⟩ representation (2j1 +
1)(2j2 + 1) is the total number of states. Since:

(2j1 + 1)(2j2 + 1) = 4j1j2 + 2j1 + 2j2 + 1.
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Subtracting the two results for the total number of states should give zero:

0 = j21 + 2j1j2 + j22 + j1 + j2 − jmin(jmin − 1) + j1 + j2 − jmin + 1

− (4j1j2 + 2j1 + 2j2 + 1)

= j21 − 2j1j2 + j22 − jmin(jmin)

As a result, we find j2min − (j1 − j2)
2 = 0, which implies that:

jmin = |j1 − j2|.

To answer the second question, we can convert between the two repre-
sentations as follows:

|j,m, j1, j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

|j1,m1, j2,m2⟩⟨j1,m1, j2,m2|j,m, j1, j2⟩,

where |j1,m1, j2,m2⟩⟨j1,m1, j2,m2|j,m, j1, j2⟩ are our Clebsch-Gordan co-
efficients. Similarly:

|j1,m1, j2,m2⟩ =
j=j1−j2∑
j=j1+j2

j∑
m=−j

|j,m, j1, j2⟩⟨j,m, j1, j2|j1,m1, j2,m2⟩,

where ⟨j,m, j1, j2|j1,m1, j2,m2⟩ are the complex conjugates of the Clebsch-
Gordan coefficients above, which are also calledClebsch-Gordan coefficients.
Note that the phases are chosen so that coefficients are real, so the only am-
biguity is in the ± signs, which are fixed by a convention.

6 Summary

Once we have identified the allowed j values, we can compute every state
in the coupled basis in terms of the uncoupled basis by using the lowering
operators and orthogonality. This procedure becomes very tedious to work
with and we might want to seek a simpler way to do it. There is no free
lunch, but there are alternatives one can use to do this. Often, if one needs
to combine many angular momenta together, a computer can be employed
to do the algebra for you and save a lot of effort.
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