
Phys 506 lecture 13: Addition of Angular Momentum II

1 Two Spin-12 Particles

Let’s examine the simplest case concretely: j1 = 1
2 and j2 =

1
2 .

• We can form a J = 1 state (called a triplet) and
• We can form a J = 0 state (called a singlet)

Obviously j1 = j2 =
1
2 always. Then |j,mj , j1, j2⟩ = |j,mj⟩ can be written as

|j = 1,mj = +1⟩ =
∣∣∣∣m1 = +

1

2
,m2 = +

1

2

〉
= |↑↑⟩ ,

since this is the only way to get +1 for mj and

|j = 1,mj = −1⟩ =
∣∣∣∣m1 = −1

2
,m2 = −1

2

〉
= |↓↓⟩ ,

but formj = 0we have two possibilities

|j = 1,mj = 0⟩ = α

∣∣∣∣m1 = +
1

2
,m2 = −1

2

〉
+ β

∣∣∣∣m1 = −1

2
,m2 = +

1

2

〉
= α |↑↓⟩+ β |↓↑⟩ .

How do we find α and β?

Answer: Use the total spin lowering operator. We know

J− |j = 1,mj = 1⟩ = ℏ
√
(j +mj)(j −mj + 1) |j = 1,mj = 0⟩

= ℏ
√
2 · 1 |j = 1,mj = 0⟩

=
√
2ℏ |j = 1,mj = 0⟩

But J− = J−
1 + J−

2 = S−
1 + S−

2 where S− |↑⟩ = ℏ |↓⟩. So,

(S−
1 + S−

2 ) |↑↑⟩ = ℏ |↓↑⟩+ ℏ |↑↓⟩
=

√
2ℏ |j = 1,mj = 0⟩

which tells us that α = β = 1√
2
. Hence,

|j = 1,mj = 0⟩ = 1√
2
|↑↓⟩+ 1√

2
|↓↑⟩
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How to find |j = 0,mj = 0⟩? Well, it must be orthogonal to |j = 1,mj = 0⟩, since
⟨j = 1,mj = 0|j = 0,mj = 0⟩ = 0,

so it must be
|j = 0,mj = 0⟩ = 1√

2
|↑↓⟩ − 1√

2
|↓↑⟩ .

Note that we have an ambiguity of a ±1 for the state.

2 Spin-12 and arbitrary j

Here, we consider a general case where j1 is arbitrary and j2 =
1
2 . Then,

j = j1 +
1

2
or j1 −

1

2

Obviously, ∣∣∣∣j = j1 +
1

2
,mj = j1 +

1

2

〉
=

∣∣∣∣m1 = j1,m2 =
1

2

〉
.

To find
∣∣j = j1 +

1
2 ,mj = j1 − 1

2

〉, use the lowering operator, recalling that

J−
∣∣∣∣j = j1 +

1

2
,mj = j1 +

1

2

〉
= ℏ

√(
j1 +

1

2
+ j1 +

1

2

)(
j1 +

1

2
− j1 −

1

2
+ 1

) ∣∣∣∣j = j1 +
1

2
,mj = j1 −

1

2

〉
= ℏ
√
2j1 + 1

∣∣∣∣j = j1 +
1

2
,mj = j1 −

1

2

〉
.

But J− = J−
1 + S−

2 so

J−
∣∣∣∣j1,m2 =

1

2

〉
= ℏ

√
2j1

∣∣∣∣m1 = j1 − 1,m2 =
1

2

〉
+ ℏ

∣∣∣∣m1 = j1,m2 =
1

2

〉
.

So∣∣∣∣j = j1 +
1

2
,mj = j1 −

1

2

〉
=

1√
2j1 + 1

∣∣∣∣m1 = j1,m2 = −1

2

〉
+

√
2j1

2j1 + 1

∣∣∣∣m1 = j1 − 1,m2 =
1

2

〉
.

The state
∣∣j1 = j1 − 1

2 ,mj = j1 − 1
2

〉 is orthogonal to this so∣∣∣∣j1 = j1 −
1

2
,mj = j1 −

1

2

〉
=

√
2j1

2j1 + 1

∣∣∣∣m1 = j1,m2 = −1

2

〉
− 1√

2j1 + 1

∣∣∣∣m1 = j1 − 1,m2 =
1

2

〉
.

How do we find lowermj values? Use the lowering operator again.∣∣∣∣j = j1 +
1

2
,mj = j1 −

3

2

〉
=

1

ℏ
√
2j1 · 2

J−
∣∣∣∣j = j1 +

1

2
,mj = j1 −

1

2

〉
=

1√
2j1 · 2(2j1 + 1)

·
√
2j1 · 1

∣∣∣∣m1 = j1 − 1,m2 = −1

2

〉
+

1√
2j1 · 2(2j1 + 1)

√
2j1
√
(2j1)2

∣∣∣∣m1 = j1 − 2,m2 =
1

2

〉
+

1√
2j1 · 2(2j1 + 1)

√
2j1

∣∣∣∣m1 = j1 − 1,m2 = −1

2

〉
.
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Therefore,
∣∣∣∣j = j1 +

1

2
,mj = j1 −

3

2

〉
=

√
2

2j1 + 1

∣∣∣∣m1 = j1 − 1,m2 = −1

2

〉
+

√
2j1 − 1

2j1 + 1

∣∣∣∣m1 = j1 − 2,m2 =
1

2

〉
.

In general, one finds
∣∣∣∣j = j1 +

1

2
,mj

〉
=

√
j1 −mj +

1
2

2j1 + 1

∣∣∣∣m1 = mj +
1

2
,m2 = −1

2

〉
+

√
j1 +mj +

1
2

2j1 + 1

∣∣∣∣m1 = mj −
1

2
,m2 =

1

2

〉
.

Similarly,
∣∣∣∣j = j1 −

1

2
,mj

〉
=

√
j1 +mj +

1
2

2j1 + 1

∣∣∣∣m1 = mj +
1

2
,m2 = −1

2

〉
−

√
j1 −mj +

1
2

2j1 + 1

∣∣∣∣m1 = mj −
1

2
,m2 =

1

2

〉
.

3 Alternative Derivation

Another way to derive this is as follows. Start with a general expression for the state:

|j,mj⟩ = α

∣∣∣∣m1 = mj −
1

2
,m2 =

1

2

〉
+ β

∣∣∣∣m1 = mj +
1

2
,m2 = −1

2

〉
.

Using the spherical basis for the dot product, write the total squared angular momentum as

Ĵ2 = (Ĵ1 + Ĵ2)
2 = Ĵ2

1 + Ĵ2
2 + 2Ĵ1 · Ĵ2

= Ĵ2
1 + Ĵ2

2 + 2

(
J+
1 J−

2 + J−
1 J+

2

2

)
+ 2Jz

1J
z
2 .

Then, act Ĵ2 on the state and use the known results for the different operators in the uncoupled
basis:

Ĵ2

ℏ2
|j,mj⟩ = α

∣∣∣∣m1 = mj −
1

2
,m2 =

1

2

〉(
j1(j1 + 1) +

3

4
+ 2(mj −

1

2
) · 1

2

)
+ α

∣∣∣∣m1 = mj +
1

2
,m2 = −1

2

〉(√
(j1 −mj +

1

2
)(j1 +mj −

1

2
+ 1)

)

+ β

∣∣∣∣m1 = mj +
1

2
,m2 = −1

2

〉(
j1(j1 + 1) +

3

4
+ 2(mj +

1

2
)(−1

2
)

)
+ β

∣∣∣∣m1 = mj −
1

2
,m2 =

1

2

〉(√
(j1 +mj +

1

2
)(j1 −mj −

1

2
+ 1)

)

=

 j1(j1 + 1) +mj +
1
4

√
(j1 −mj +

1
2)(j1 +mj +

1
2)√

(j1 +mj +
1
2)(j− +mj +

1
2) j1(j1 + 1)−mj +

1
4

(α
β

)

We want this to be proportional to
(
α
β

)
to be an eigenstate of Ĵ2.
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So,

det

 j1(j1 + 1) +mj +
1
4 − λ

√
(j1 −mj +

1
2)(j1 +mj +

1
2)√

(j1 +mj +
1
2)(j− +mj +

1
2) j1(j1 + 1)−mj +

1
4 − λ

 = 0,

=⇒ λ2 + λ

(
−2(j1 +

1

2
)2
)
+

(
j1 +

1

2

)4

−m2
j −

(
j1 +

1

2

)2

+m2
j = 0.

Simplifying, we get

λ2 − 2

(
j1 +

1

2

)2

λ+

(
j1 +

1

2

)2
(
1 +

(
j1 +

1

2

)2
)

= 0.

Solving for λ, we find that

λ =

(
j1 +

1

2

)2

± 1

2

√
4

(
j1 +

1

2

)4

− 4

(
j1 +

1

2

)4

+ 4

(
j1 +

1

2

)2

=⇒
(
j1 +

1

2

)(
j1 +

1

2
± 1

)
.

One root is j = j1 +
1
2 and the other is j1 − 1

2 . Note that we knew this ahead of time, so we did not
really need to solve the equation. We now need to find α and β for each. λ = (j+1/2)(j1+1/2±1)
so, ((

j +
1

2

)2

−
(
j +

1

2

)(
j +

1

2
± 1

)
+mj

)
α+

√(
j +

1

2

)2

−m2β = 0

(
∓
(
j +

1

2

)
+mj

)
α+

√(
j +

1

2

)2

−m2β = 0.

Therefore,

β =
±
(
j + 1

2

)
−mj√(

j + 1
2

)2 −m2
j

α = ±

√
j1 ∓mj +

1
2

j1 ±mj +
1
2

α.

Now, let

α = C

√
j1 ±mj +

1

2

β = C

√
j1 ∓mj +

1

2

Then, we must demand that α2 + β2 = 1

C2

(
j1 ±mj +

1

2
+ j1 ∓mj +

1

2

)
= 1 =⇒ C =

1√
2j1 + 1

.

Hence,∣∣∣∣j1 + 1

2
,mj

〉
=

√
j1 +mj +

1
2

2j1 + 1

∣∣∣∣m1 = mj −
1

2
,m2 =

1

2

〉
+

√
j1 −mj +

1
2

2j1 + 1

∣∣∣∣m1 = mj +
1

2
,m2 = −1

2

〉
∣∣∣∣j1 − 1

2
,mj

〉
= −

√
j1 −mj +

1
2

2j1 + 1

∣∣∣∣m1 = mj −
1

2
,m2 =

1

2

〉
+

√
j1 +mj +

1
2

2j1 + 1

∣∣∣∣m1 = mj +
1

2
,m2 = −1

2

〉
.
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