Phys 506 lecture 14: Rayleigh-Schrodinger perturbation
theory

1 Introduction to nondegenerate perturbation theory

We start with the exact energy eigenvalue problem, given by H [n) = Eyu|n). But, perhaps this
problem is too difficult to solve. Then, if H = Hy + V, where Ho can be solved exactly, but H
cannot and V is in some sense “small,” then I can try to find how V perturbs Hj to arrive at H.

The unperturbed problem is Hy|n)o = E°|n)o, whose exact solution we know by assumption.
Furthermore, we assume the system is nondegenerate, so we have EY # EY unless m = n. This
is known to be the case for all one-dimensional problems on the infinite one-dimensional spatial
domain via the so-called node theorem.

We want to find F,, and |n) as a power series in V. We start with what we know, which is

(ﬁo + f/) In) = (En + AE,) [n), with E,=E}+ AE,.
We then re-arrange this expression to
(Eg - ﬁfo) In) = (f/ - AEn> In).

We want to somehow "invert" this, in the sense that we wish to multiply by the inverse of the
operator on the far left to obtain the perturbed state |n). Unfortunately, that operator cannot be
inverted, because it can involve a divide by zero.

Let us examine how to work with nontraditional operators such as

E,PL—HO

be best expressed in terms of the eigenbasis of Hj as

1
P m m
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complete set of states=I

by a multiply by one. But, Hy|m)o = ES,|m)o, so
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7 2 moo(m| =} —5——=5-lmjeo(m|
o L

becomes singular for the one term in the sum, where m = n.



Quantum Mechanics II Lecture 14

2 Projection oeprators

We deal with this by introducing projection operators.
Define P, = [n)oo(n| and Qn=1-PF, =3, ., |m)oo(m|.
Let us first note some properties of projection operators:

n + Qn =1
P2 — P, check P2 = |n)oo (n | nYoo(n| = |n)oo(n| = P,

1

N N N N 2 ~ N N
02 =0, check Qi:(l—Pn) —1- BB+ P2=1-P,—P,+P,=1- P, =0,

PQn=0 check P,Qn =In)oo(n| Y_ Im)oo(m|, bute(njm)o=0ifm#n, so QuP,=0

m—+n

and then [Pn, Qn} = 0.

How do projection operators act on an arbitrary operator? We determine this by represent-
ing the operator in the energy eigenbasis of Hj, where we can immediately apply the projection
operators:

0= Z Oy M) 00 <m/}

mm/

PnO = Z Onm/’n>00 <m’

Qné = Z Z Omm’|m>00<m/|

m#n m/

0,00, = Z Z Ot |m)oo{m’], and so on
m##n m/#n
m#

y nO n — Onn‘n>00<n‘

In words, we say P, projects parallel to |n) and Q,, projects perpendicular to |n)g.
Claim: [Pm Iffo} =0.

Proof: . .
P, Hy = |n)oo(n|Ho = E2|n)oo(n|

HyP, = Ho|n)oo(n| = Eo|n)oo(n|
SO pnﬁo — I:Iopn =0.

Since Qn =1— P, we have [Qn, I;TO] = [1 — 15”, FIO} = 0 as well.

3 Formalism to generate the series
Now examine the original equation

(En — Ho)ln) = (V — AE,)|n).
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Then

A Qn

Qulr) = 5o (V= aE,) n).

Check: A
Quln) =Y Im)oo(min),
m#n
Qn ¢ V AE,
ngf]o(v n%:?JmOO EO — E0| n).

But,

> Im)oo(m|(Ey — Ho)ln) = Y [m)oo(m|(V — AE,)|n),

from our first equations above. Hence,

LHS = 37 (ES - EY) [moo(mln) = 3 [mboo(m|(V — AE,)|n)

m#n m#n

since each coefficient of |m) must be equal and EY — EY, # 0, we then have

V AFE,
> Imhoo(mln) = > [m)oo(m EO O - In)

as claimed.

[n) = |n)oo(n|n) +

We move the rightmost term to the left hand side to get

I—- (f/ — AE,)| In) = [n)oo(n|n).

EO — [

n

Now, we can multiply by the inverse operator, because it never vanishes (which is where we use
the fact that V' is small), so we have

-1

‘n>0.

~

|n)y = o(n|n) [I[ - %

o (V - AEn)

As a convention we choose (n|n) = 1 and normalize the true wavefunction |n) only at the end.
This simplifies many places in the calculation, but one needs to remember that (n|n) # 1 now.

so||n) = [1— —22—(V
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4 Examining the first few terms in the expansion

By expanding the inverse operator as a geometric series, we generate the perturbation theory ex-

pansion. This gives us

E0 — Hy —~ EY — H, EO — Hy —~

drop drop

e (oan) O (roan) L (v am | s
Eg—HO E,g—Ho Eg—H[) ~—~

We can always drop the last AE,, term since
AFE, = number and QnAEn\n)o = 0 always.

To perform the perturbation theory expansion, we write

In) = Z In)™ | with  |n)® =|n)y and the index denotes the powers of V/
m=0

o0

E,=)Y_ Ey EY=E)
m=0

AE, =Y E™
m=1

We need to know the results up to ES™ in order to find |n)(™+1).
The first few terms in the expansion are then

In) @ = |n),

(I)Z&A @) _ Qn o~ o) Qn -~
|n) A I:IOV|n>0> n) = (V E( ) T H0V|n>0’

G _ @ (Cpe)_ O O (p g _ O (v po)_@n ¢
(n> Eg - ﬁO < En > Eg _ I;[OV’n>O + Eg — Ho (V En ) E,g — fA[O (V n ) Eg — }AIOV|77,>0,
and so on.

How do we find Eém) ? Note that we have

(Eg - ﬁo) In) = (V - AEn> In)  multiply by o(n|
o(n|(EY — Hy)|n) = o(n|(V — AE,)|n), which gives us

g ollVIn)

= nVn,, since g(n|n) = 1.
g = olVin.) o(nln)

So > EM™ = S22 (n|V|n)(™). By matching powers of V, we get

m=1

E™ = o(n|V]n)™ Y

in the expression




Quantum Mechanics II

Lecture 14

So, we work out the first few orders:

EM = o(n|VIn)o =

m)® =

For m = 2 and 3, we have

Qn

. Vin
—Vinyo =) —r
EY — Hy g;n Ep -

n

= |m)
EO O

Eém:%lm:m#nlm: ,fm prime = m #n
- S0 i,
e op) v,
=3 3 pnlly e B Ve
2
B = W;L Em (0 V”E;%?" By n%;n (E(’%VEWJLE’%)2
| e

This process can be continued to arbitrary order (on the HW you will examine through 4th

order.)




