
Phys 506 lecture 14: Rayleigh-Schrodinger perturbation
theory

1 Introduction to nondegenerate perturbation theory

We start with the exact energy eigenvalue problem, given by Ĥ|n⟩ = En|n⟩. But, perhaps this
problem is too difficult to solve. Then, if Ĥ = Ĥ0 + V̂ , where Ĥ0 can be solved exactly, but Ĥ
cannot and V̂ is in some sense “small,” then I can try to find how V̂ perturbs Ĥ0 to arrive at Ĥ .

The unperturbed problem is Ĥ0|n⟩0 = E0
n|n⟩0, whose exact solution we know by assumption.

Furthermore, we assume the system is nondegenerate, so we have E0
n ̸= E0

m unless m = n. This
is known to be the case for all one-dimensional problems on the infinite one-dimensional spatial
domain via the so-called node theorem.

We want to find En and |n⟩ as a power series in V̂ . We start with what we know, which is(
Ĥ0 + V̂

)
|n⟩ =

(
E0

n +∆En

)
|n⟩, with En = E0

n +∆En.

We then re-arrange this expression to(
E0

n − Ĥ0

)
|n⟩ =

(
V̂ −∆En

)
|n⟩.

We want to somehow "invert" this, in the sense that we wish to multiply by the inverse of the
operator on the far left to obtain the perturbed state |n⟩. Unfortunately, that operator cannot be
inverted, because it can involve a divide by zero.

Let us examine how to work with nontraditional operators such as 1
E0

n−Ĥ0
. This operator can

be best expressed in terms of the eigenbasis of Ĥ0 as

1

E0
n − Ĥ0

∑
m

|m⟩00⟨m|︸ ︷︷ ︸
complete set of states=I

by a multiply by one. But, Ĥ0|m⟩0 = E0
m|m⟩0, so

1

E0
n − Ĥ0

∑
m

|m⟩00⟨m| =
∑
m

1

E0
n − E0

m

|m⟩00⟨m|

becomes singular for the one term in the sum, wherem = n.
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2 Projection oeprators

We deal with this by introducing projection operators.
Define P̂n = |n⟩00⟨n| and Q̂n = I− P̂n =

∑
m ̸=n |m⟩00⟨m|.

Let us first note some properties of projection operators:

P̂n + Q̂n = I

P̂ 2
n = P̂n check P̂ 2

n = |n⟩00 ⟨n | n⟩00︸ ︷︷ ︸
1

⟨n| = |n⟩00⟨n| = P̂n

Q̂2
n = Q̂n check Q̂2

n =
(
1− P̂n

)2
= 1− P̂n − P̂n + P̂ 2

n = 1− P̂n − P̂n + P̂n = 1− P̂n = Q̂n

P̂nQ̂n = 0 check P̂nQ̂n = |n⟩00⟨n|
∑
m+n

|m⟩00⟨m|, but 0⟨n|m⟩0 = 0 if m ̸= n, so Q̂nP̂n = 0

and then
[
P̂n, Q̂n

]
= 0.

How do projection operators act on an arbitrary operator? We determine this by represent-
ing the operator in the energy eigenbasis of Ĥ0, where we can immediately apply the projection
operators:

Ô =
∑
mm′

Omm′ |m⟩00
〈
m′∣∣

P̂nÔ =
∑
m′

Onm′ |n⟩00
〈
m′∣∣ , P̂nÔP̂n = Onn|n⟩00⟨n|

Q̂nÔ =
∑
m̸=n

∑
m′

Omm′ |m⟩00⟨m′|

Q̂nÔQ̂n =
∑
m ̸=n

∑
m′ ̸=n

Omm′ |m⟩00⟨m′|, and so on

Q̂nÔP̂n =
∑
m ̸=

Omn|m⟩00⟨n|, etc.

In words, we say P̂n projects parallel to |n⟩0 and Q̂n projects perpendicular to |n⟩0.
Claim:

[
P̂n, Ĥ0

]
= 0.

Proof:
P̂nĤ0 = |n⟩00⟨n|Ĥ0 = E0

n|n⟩00⟨n|
Ĥ0P̂n = Ĥ0|n⟩00⟨n| = E0

n|n⟩00⟨n|
so P̂nĤ0 − Ĥ0P̂n = 0.

Since Q̂n = 1− P̂n we have
[
Q̂n, Ĥ0

]
=

[
1− P̂n, Ĥ0

]
= 0 as well.

3 Formalism to generate the series

Now examine the original equation

(E0
n − Ĥ0)|n⟩ = (V̂ −∆En)|n⟩.
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Then

Q̂n|n⟩ =
Q̂n

E0
n − Ĥ0

(
V̂ −∆En

)
|n⟩.

Check:
Q̂n|n⟩ =

∑
m̸=n

|m⟩00⟨m|n⟩,

Q̂n

E0
n − Ĥ0

(V̂ −∆En)|n⟩ =
∑
m̸=n

|m⟩00⟨m| V̂ −∆En

E0
n − E0

m

|n⟩.

But, ∑
m ̸=n

|m⟩00⟨m|(E0
n − Ĥ0)|n⟩ =

∑
m ̸=n

|m⟩00⟨m|(V̂ −∆En)|n⟩,

from our first equations above. Hence,

LHS =
∑
m ̸=n

(
E0

n − E0
m

)
|m⟩00⟨m|n⟩ =

∑
m̸=n

|m⟩00⟨m|(V̂ −∆En)|n⟩

since each coefficient of |m⟩0 must be equal and E0
n − E0

m ̸= 0, we then have

∑
m ̸=n

|m⟩00⟨m|n⟩ =
∑
m ̸=n

|m⟩00⟨m| V̂ −∆En

E0
n − E0

m

|n⟩

as claimed.

But |n⟩ =
(
P̂n + Q̂n

)
|n⟩ and P̂n|n⟩ = |n⟩00⟨n|n⟩, So

|n⟩ = |n⟩00⟨n|n⟩+
Q̂n

E0
n − Ĥ0

(V̂ −∆En⟩|n⟩

We move the rightmost term to the left hand side to get[
I− Q̂n

E0
n − Ĥ

(V̂ −∆En)

]
|n⟩ = |n⟩00⟨n|n⟩.

Now, we can multiply by the inverse operator, because it never vanishes (which is where we use
the fact that V̂ is small), so we have

|n⟩ = 0⟨n|n⟩

[
I− Q̂n

E0
n − Ĥ0

(
V̂ −∆En

)]−1

|n⟩0.

As a convention we choose 0⟨n|n⟩ = 1 and normalize the true wavefunction |n⟩ only at the end.
This simplifies many places in the calculation, but one needs to remember that ⟨n|n⟩ ≠ 1 now.

so |n⟩ = [I− Q̂n

E0
n − Ĥ0

(V̂ −∆En)]
−1|n⟩0.
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4 Examining the first few terms in the expansion

By expanding the inverse operator as a geometric series, we generate the perturbation theory ex-
pansion. This gives us

|n⟩ =|n⟩0 +
Q̂n

E0
n − Ĥ0

V̂ −∆En︸ ︷︷ ︸
drop

 |n⟩0 +
Q̂n

E0
n − Ĥ0

(
V̂ −∆En

) Q̂

E0
n − Ĥ0

V̂ −∆En︸ ︷︷ ︸
drop

 |n⟩0

+
Q̂n

E0
n − Ĥ0

(
V̂ −∆En

) Q̂n

E0
n − Ĥ0

(
V̂ −∆En

) Q̂n

E0
n − Ĥ0

V̂ −∆En︸ ︷︷ ︸
drop

 |n⟩0 + · · ·

We can always drop the last ∆En term since

∆En = number and Q̂n∆En|n⟩0 = 0 always.

To perform the perturbation theory expansion, we write

|n⟩ =
∞∑

m=0

|n⟩(m), with |n⟩(0) = |n⟩0 and the index denotes the powers of V̂ in the expression

En =
∞∑

m=0

E(m)
n E(0)

n = E0
n

∆En =

∞∑
m=1

E(m)
n

We need to know the results up to E
(m)
n in order to find |n⟩(m+1).

The first few terms in the expansion are then

|n⟩(0) = |n⟩0

|n⟩(1) = Q̂n

Ê0
n − Ĥ0

V̂ |n⟩0, |n⟩(2) = Q̂n

E0
n − Ĥ0

(
V̂ − E(1)

n

) Q̂n

E0
n −H0

V̂ |n⟩0,

(n⟩(3) = Q̂n

E0
n − Ĥ0

(
−E(2)

n

) Q̂n

E0
n − Ĥ0

V̂ |n⟩0 +
Q̂n

E0
n −H0

(
V̂ − E(1)

n

) Q̂n

E0
n − Ĥ0

(
V̂ − E(0)

n

) Q̂n

E0
n − Ĥ0

V̂ |n⟩0,

and so on.
How do we find E

(m)
n ? Note that we have(
E0

n − Ĥ0

)
|n⟩ =

(
V̂ −∆En

)
|n⟩ multiply by 0⟨n|

0⟨n|(E0
n − Ĥ0)|n⟩ = 0⟨n|(V̂ −∆En)|n⟩, which gives us

∆En =
0⟨n|V̂ |n⟩
0⟨n|n⟩

= 0⟨n|V̂ |n, ⟩, since 0⟨n|n⟩ = 1.

So
∑∞

m=1E
(m)
n =

∑∞
m=0⟨n|V̂ |n⟩(m). By matching powers of V̂ , we get

E(m)
n = 0⟨n|V̂ |n⟩(m−1)
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So, we work out the first few orders:

E(1)
n = 0⟨n|V̂ |n⟩0 = Vnn

|n⟩(1) = Q̂n

E0
n − Ĥ0

V̂ |n⟩0 =
∑
m ̸=n

Vmn

E0
n − E0

m

|m⟩0.

Form = 2 and 3, we have

E(2)
n =

∑
m̸=n

VnmVmn

E0
n − E0

m

=
∑
m̸=n

|Vnm|2

E0
n − E0

m

=
∑
m

′ |Vnm|2

E0
n − E0

m

prime ⇒ m ̸= n

|n⟩(2) =
Q̂n

(
V̂ − E

(1)
n

)
E0

n − Ĥ0

Q̂n

E0
n − Ĥ0

V̂ |n⟩0

=
∑
m̸=n

∑
m′ ̸=n

∣∣m′〉
0

(Vm′m − E
(1)
n δmm′)

E0
n − E0

m′

Vmn

E0
n − E0

m

, E(1)
n = Vnn

E(3)
n =

∑
m̸=n

∑
m′ ̸=n

Vnm′Vm′mVmn(
E0

n − E0
m′
)
(E0

n − E0
m)

− Vnn

∑
m̸=n

|Vnm|2

(E0
n − E0

m)2

=
∑
m

′
∑
m′

′′ Vnm′Vm′mVmn(
E0

n − E0
m′
)
(E0

n − E0
m)

− Vnn

∑
m

′ |Vnm|2

(E0
n − E0

m)2

This process can be continued to arbitrary order (on the HW you will examine through 4th
order.)
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