
Phys 506 lecture 15: Wigner-Brillouin
perturbation theory

1 Formalism for the series for the perturbed states
Recall from our previous work that we wish to solve the general energy eigen-
value problemwith Ĥ|n⟩ = En|n⟩, with the Hamiltonian able to be proken into
an unperturbed and perturbed part via Ĥ = Ĥ0 + V̂ , and the unperturbed
energy eigenvalue problem is given by Ĥ0|n⟩0 = E0

n|n⟩0. This implies that
Ĥ|n⟩ = En|n⟩ can be written as

(En − Ĥ0)|n⟩ = V̂ |n⟩.

Therefore, let’s define, as before the two following projection operators (onto
and perpendicular to the unperturbed ground state):

P̂n|n⟩0 0⟨n| and Q̂n = 1− P̂n.

Now recall that we previously found that

Q̂n|n⟩ =
Q̂n

En − Ĥ0

V̂ |n⟩.

However, beware that there is a caveat to this—namely that Q̂n projects 1
En−Ĥ0

perpendicular to the unperturbed ground state only when V̂ = 0, because the
denominator has an En in it instead of an E

(0)
N . Now note that:

|n⟩ = (P̂n + Q̂n)|n⟩ = P̂n|n⟩+
Q̂n

En − Ĥ0

V̂ |n⟩.

So we write: (
1− Q̂n

En − Ĥ0

V̂

)
|n⟩ = P̂n|n⟩ = |n⟩0 0⟨n|n⟩ = |n⟩0,

using the same normalization as we did before. Then we have that

|n⟩ =

[
1− Q̂nV̂

En − Ĥ0

]−1

|n⟩0 = |n⟩0 +
Q̂nV̂

En − Ĥ0

|n⟩0 +
Q̂nV̂ Q̂nV̂

(En − Ĥ0)2
|n⟩0 + · · ·
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2 Formalism to find the perturbed energy
To find En, multiply (En − Ĥ0)|n⟩ = V̂ |n⟩ by 0⟨n| from the left to find that

En − E(0)
n = 0⟨n|V̂ |n⟩.

So we find that

En = E(0)
n + 0⟨n|V̂ |n⟩0 + 0⟨n|V̂

Q̂n

En − Ĥ0

V̂ |n⟩0 + · · ·

= E(0)
n + Vnn +

∑
m̸=n

VnmVmn

En − E
(0)
m

+ · · ·

Note thatEn appears on both the RHS and LHS. This generates a new equation
forEn. But the series is much simpler than for the non-degenerate case, and we
did not need to assume that the systemwas non-degenerate. On the downside,
it is often less accurate than Rayleigh-Schrödinger perturbation theory. The full
series for |n⟩ becomes:

|n⟩ =
∞∑

m=0

(
Q̂nV̂

En − Ĥ0

)m

|n⟩0.

For En, we have:

En =E(0)
n + Vnn +

∑
m ̸=n

VnmVmn

En − E
(0)
m

+
∑
m̸=n

∑
m′ ̸=n

VnmVmm′Vm′n

(En − E
(0)
m )(En − E

(0)
m′ )

+ · · ·

+
∑

m1 ̸=n

∑
m2 ̸=n

· · ·
∑

mℓ ̸=n

Vnm1
Vm1m2

Vm2m3
· · ·Vmℓ−1mℓ

Vmℓn

(En − E
(0)
m1)(En − E

(0)
m2) · · · (En − E

(0)
mℓ )

.

This leads to a high-order polynomial equation for En. Usually, only one root
is the physical root in this polynomial equation.

3 Example: Shifting the simple harmonic oscillator
Let’s consider an example to see this process in action. Consider the following
one-dimensional Hamiltonian:

Ĥ0 =
p̂2

2m
+

1

2
kx̂2

where V̂ = cx̂. This corresponds to a linear shift of the harmonic-oscillator
Hamiltonian. The full Hamiltonian is then:

Ĥ =
p̂2

2m
+

1

2
kx̂2 + cx̂ =

p̂2

2m
+

1

2
k
(
x̂+

c

k

)2
− c2

2k
.
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Now, define x̂′ = x̂+ c
k to find that

[x̂′, p̂] = iℏ

and
Ĥ =

p̂2

2m
+

1

2
kx̂′2 − c2

2k

and we get that

En = ℏω
(
n+

1

2

)
− c2

2k
.

This means the energy is shifted to second order only!
Now, we calculate energies with perturbation theory. First we determine all

of the quantities we will need. We rewrite V̂ as V̂ = cx̂ = c
√

ℏ
2mω

(
â+ â†

)
.

Then, we find that Vnn = ⟨n|cx̂|n⟩ = 0, Vmn = 0 unless m = n ± 1. Then, we
have that

Vn,n+1 = c

√
ℏ

2mω

√
n+ 1 and Vn,n−1 = c

√
ℏ

2mω

√
n.

We also have that E(0)
n − E

(0)
n+1 = −ℏω and E

(0)
n − E

(0)
n−1 = ℏω.

3.1 Rayleigh-Schrödinger perturbation theory
We now compute the Rayleigh-Schrödinger perturbation theory:

En = ℏω
(
n+

1

2

)
+ 0 +

|Vn,n+1|2

E
(0)
n − E

(0)
n+1

+
|Vn,n−1|2

E
(0)
n − E

(0)
n−1

= ℏω
(
n+

1

2

)
+

c2

2mω

ℏ
ℏω

(−(n+ 1) + n)

= ℏω
(
n+

1

2

)
− c2

2mω2
.

Hence, En = ℏω(n+ 1
2 )−

c2

2k . This agrees with the exact answer.
As a further check, let’s look at the third-order correction:

∆E(3)
n =

′∑
m

′∑
m′

VnmVmm′Vm′n

(E
(0)
n − E

(0)
m )(E

(0)
n − E

(0)
m′ )

− Vnn

′∑
m

|Vnm|2

(E
(0)
n − E

(0)
m )2

.

But, Vnn = 0 and VnmVmm′Vm′n = 0 sincem = n± 1 andm′ = n± 1 in all cases
implies that we must also have that Vmm′ = 0. Thus, ∆E

(3)
n = 0 and similarly

for all m ≥ 3, we have ∆E
(m)
n = 0.
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3.2 Wigner-Brillouin perturbation theory
Let’s now turn to Wigner-Brillouin perturbation theory. Here we have:

En = ℏω
(
n+

1

2

)
+ 0 +

c2ℏ
2mω

[
n+ 1

En − ℏω(n+ 3
2 )

+
n

En − ℏω(n− 1
2 )

]
Multiply by (En − ℏω(n+ 3

2 ))(En − ℏω(n− 1
2 )) to get:

En(En − ℏω(n+ 3
2 ))(En − ℏω(n− 1

2 ))

= ℏω(n+ 1
2 )(En − ℏω(n+ 3

2 ))(En − ℏω(n− 1
2 ))

+
c2ℏ
2mω

[
(n+ 1) (En − ℏω(n− 1

2 )) + n(En − ℏω(n+ 3
2 ))

]
Expanding, we find that

E3
n + E2

n[−ℏω(2n+ 1)− ℏω(n+ 1
2 )]

− En

[
(ℏω)2(n2 + n− 3

4 + 2n2 + 2n+ 1
2 )−

c2ℏ
2mω

(2n+ 1)

]
− (ℏω)3

[
n3 + 3

2n
2 − 1

4n− 3
8

]
+

c2ℏ
2mω

ℏω
[
n2 + 1

2n− 1
2 + n2 + 3

2n
]
= 0.

Simplifying, we find that

E3
n + E2

n

[
−ℏω(3n+ 3

2 )
]
+ En

[
(ℏω)2

(
3n2 + 3n− 1

4

)
− c2ℏ

2mω
(2n+ 1)

]
− (ℏω)3

[
n3 + 3

2n
2 − 1

4n− 3
8

]
+

c2ℏ2

2mω
(2n2 + 2n− 1

2
) = 0.

This should factorize if it gives the exact answer. But, we have that(
En − ℏω

(
n+

1

2

)
+

c2

2mω2

)
×
(
E2

n + En

[
−ℏω(2n+ 1)− c2

2mω2

]
+ (ℏω)2

(
n2 + n− 3

4

)
− c2ℏ

2mω

(
n+

1

2

)
+

c4

(2mω2)2

)
is off by an extra term c6

(2mω2)3 , which means that the result will have an error

of order O
(

c6

(2mω2)3

)
. Also note that we have 3 roots, not one. This means that

some roots ofthe Wigner-Brillouin perturbation theory are unphysical. In gen-
eral, one often finds that Wigner-Brillouin perturbation theory is less accurate
than Rayleigh-Schrödinger perturbation theory, as shown here, which further
implies that higher order terms must contribute to cancel extra terms and ulti-
mately give us the exact answer.
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3.3 Special case of n = 0

Lastly, let’s check the energy for n = 0, where we can solve the polynomial
equation exactly:

E0 = ℏω
1

2
+

c2ℏ
2mω

1

E0 − 3
2ℏω

,

This then becomes

E2
0 − E0 ·

3

2
ℏω = ℏω

(
E0 −

3

2
ℏω
)
+

c2ℏ
2mω

,

0 = E2
0 − E0 · 2ℏω +

3

4
(ℏω)2 − c2ℏ

2mω
,

The solutions are

E0 = ℏω +
1

2

√
4(ℏω)2 − 3(ℏω)2 +

2c2ℏ
mω

,

= ℏω ± 1

2

√
(ℏω)2 +

2c2ℏ
mω

.

Now take the root:

E0 = ℏω − 1

2
ℏω
√
1 +

2c2

kℏω

= ℏω − 1

2
ℏω

(
1 +

c2

kℏω
− 4

8

(
c2

kℏω

)2

+ · · ·

)

= −1

2
ℏω − c2

2k
+

1

4

c4

k2ℏω
+ · · ·

Note the error that we have at order V 4! This will be canceled by higher-order
terms.
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