Phys 506 lecture 15: Wigner-Brillouin
perturbation theory

1 Formalism for the series for the perturbed states

Recall from our previous work that we wish to solve the general energy eigen-
value problem with H|n) = E,|n), with the Hamiltonian able to be proken into
an unperturbed and perturbed part via I = Hy + V, and the unperturbed
energy eigenvalue problem is given by Hy|n)o = E9|n)o. This implies that
H|n) = E,|n) can be written as

(B, — Hy)|n) = VIn).

Therefore, let’s define, as before the two following projection operators (onto
and perpendicular to the unperturbed ground state):

Paln)oo(n| and @, =1— P,.
Now recall that we previously found that
@n

En - HO

Qn|n> =

1
" E’!L_HO
perpendicular to the unperturbed ground state only when V' = 0, because the

However, beware that there is a caveat to this—namely that Q,, projects

denominator has an F,, in it instead of an E](\(,)). Now note that:
Qn

In) = (Pn + Qn)n) = Poln) + o ﬁown>.

So we write:
(1 - Q"V) In) = Buln) = |nbo olnln) = [no,
En - HO
using the same normalization as we did before. Then we have that
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2 Formalism to find the perturbed energy
To find E,,, multiply (E,, — Ho)|n) = V|n) by o(n| from the left to find that
E, — EW = o(n|V|n).

So we find that

E, = E9 +o(n|V|n)o + o(n]V —"r Qn Vinyo +
n_HO
VoV,
=g _nm7mn_
E® +Vin+ Y _E$)+

m¥#n N

Note that £,, appears on both the RHS and LHS. This generates a new equation
for E,,. But the series is much simpler than for the non-degenerate case, and we
did not need to assume that the system was non-degenerate. On the downside,
it is often less accurate than Rayleigh-Schrodinger perturbation theory. The full
series for |n) becomes:

(v ",
|>_mz_:0<En—ﬁ0> |>0

For E,,, we have:
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This leads to a high-order polynomial equation for F,,. Usually, only one root
is the physical root in this polynomial equation.

3 Example: Shifting the simple harmonic oscillator

Let’s consider an example to see this process in action. Consider the following
one-dimensional Hamiltonian:

where V' = ci. This corresponds to a linear shift of the harmonic-oscillator
Hamiltonian. The full Hamiltonian is then:
52 %
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H = o —|—km+cx—2 +2k + .
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Now, define 2’ = 2 + £ to find that

[ 7p} =ih
and o )
2 p 2 €
H =X -
2m + k 2k
and we get that
Bo=to(nt 1) C
nT\"MT ) T

This means the energy is shifted to second order only!
Now, we calculate energies with perturbation theory. First we determine all

of the quantities we will need. We rewrite V as V = ci = ¢,/ g (a+al).
Then, we find that V,,,, = (n|ct|n) = 0, V,,, = 0 unless m = n + 1. Then, we

have that
h h
Vamsr =c\| ——vVn+1land V, ,_1 = ct/ ——+/n
’ 2mw ’ 2mw

We also have that E,(lo) E©)

i1 = —hwand EY - Efgl = hw.

3.1 Rayleigh-Schrédinger perturbation theory

We now compute the Rayleigh-Schrodinger perturbation theory:

1 |Vn n+1|2 |Vn ’ﬂ*1|2
En:hw<n+)+0+ =G 0 (0
2 EY -ES),  EY-ED,

1 A h
- — (—(n+1
<n+2>+2mwhw( (n+1)+n)
R D
"y 2mw?’

Hence, E,, = hw(n+ %) — % This agrees with the exact answer.

As a further check, let’s look at the third-order correction:
v V Vo ' Vi 2
E(3 nmVmm' Vm/'n _ Vnn nm )
Z ; EY — EO)(EY - EY)) Z (B - ER)?

But, V,,,, = 0 and V,,,n, Vinrn Vinrn = 0 since m = n+1 and m’ = n 41 in all cases
implies that we must also have that V},,,» = 0. Thus, AE,({” = 0 and similarly

for all m > 3, we have AE(™ = 0.

W
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3.2 Wigner-Brillouin perturbation theory

Let’s now turn to Wigner-Brillouin perturbation theory. Here we have:

1 Ah n+1 n
E, = hw = 0
<n+2)—|— +2mw [Enhw(n+g)+Enﬁw(nl)]

Multiply by (E,, — iw(n + 2))(E, — hw(n — 1)) to get:

En(En - hw(n + %))(En - hw(n - %))
= hw(n + %)(En — hw(n + %))(En — hw(n — %))

n ch
2mw

{(“ 1) (Bn = h(n = 3)) + n(Bn — heo(n + §>>}

Expanding, we find that

E3 + E2[~hw(2n + 1) — hw(n + 3)]

Ah

- E, [(M)Q(n2+n—i+2n2+2n+;)—2

mw

(2n + 1)}

’h
— () [0+ 0~ k= 8]+

2 1 1 2, 3,] —
2mwﬁw[n +sn—5+n +§n]—0.

Simplifying, we find that
E} 4 B2 [-hw(3n+ )] + B, [(hw)Z (3n2 +3n— 1) - —-
2mw
252 1
- () [+ 37— 3+ £
This should factorize if it gives the exact answer. But, we have that
1 ?
E — — -
(= () + i)

x (E,% +E, [—hw(zn+ 1) — ¢ ]

2mw?
3 ch 1 ct
2(, 2 AT 1 o
+ () <n o 4) 2mw <n+ 2) * (2mw2)2>

is off by an extra term ﬁ, which means that the result will have an error

of order O (ﬁ) Also note that we have 3 roots, not one. This means that

some roots ofthe Wigner-Brillouin perturbation theory are unphysical. In gen-
eral, one often finds that Wigner-Brillouin perturbation theory is less accurate
than Rayleigh-Schrodinger perturbation theory, as shown here, which further
implies that higher order terms must contribute to cancel extra terms and ulti-
mately give us the exact answer.




Quantum Mechanics II Lecture 15

3.3 Special case of n =0

Lastly, let’s check the energy for n = 0, where we can solve the polynomial
equation exactly:
1 h 1
Ey=hwg + o——5—,
2 2mw By — 5hw

This then becomes

2
Eg—EO-;’nwzhw<Eo—3hw>+ ch

2 2mw’
3 A2h
0=FE2—-Ey-2hw+ =~ (hw)? —
0 0 +4( ) 2mw’
The solutions are
1 2¢2h
Ey = hw \/4hw2—3hw2
= huo o 5 4(hw)? — B(hw)2 + 2,
1 2¢2h
=Tw =+ -1/ (hw)? + —.
2 ( )+mw
Now take the root:
1 22
Ey=hw— —hw{/1+ —
0 2 * Thw
1 2 4/ 2 2
=hw—-hw|l4+ —— - —
2 <+khw s(khw>+ )
R O S
2 k 4k2hw

Note the error that we have at order V*! This will be canceled by higher-order
terms.




