
Phys 506 lecture 16: Degenerate Perturbation Theory I

1 Introduction to degenerate perturbation theory

Consider a Hamiltonian that can be broken up into an exactly solvable piece Ĥ0 and a small cor-
rection piece V̂ :

Ĥ = Ĥ0 + V,

where Ĥ0 satisfies
Ĥ0 |k, nk⟩0 = E0

k |k, nk⟩ .

Here, nk = 1, 2, . . . d(k) with d(k) the degeneracy of the kth energy level. We assume each state
|k, nk⟩ is part of an orthonormal basis set. We can always achieve this via a Gram-Schmidt orthog-
onalization procedure from a set of eigenvectors which span the degenerate subspace.

Our eigenvalue equation is

(Ĥ0 + V̂ ) |k, nk⟩ = Ek,nk
|k, nk⟩ .

The perturbation V̂ may totally lift the degeneracy, partially lift the degeneracy, or not lift it at all.
Follow the Rayleigh-Schrödinger strategy, we rewrite the energy eigenvalue equation as

(E0
k − Ĥ0) |k, nk⟩ = (V̂ −∆Ek,nk

) |k, nk⟩ .

We need to "protect" with projection operators to invert. But now, the projection operators for the
degenerate subspace involve a sum over d(k) terms. Define

P̂k =

d(k)∑
nk=1

|k, nk⟩0 ⟨k, nk|0 ,

which projects onto the E0
k subspace. Check:

P̂ 2
k =

d(k)∑
nk=1

d(k)∑
n′
k=1

|k, nk⟩0 ⟨k, nk|0
∣∣k, n′

k

〉
0

〈
k, n′

k

∣∣
0
=

d(k)∑
nk=1

|k, nk⟩0 ⟨k, nk|0 = P̂k,

because the energy eigenstates inside the degenerate subspace form an orthonormal set. Since
P̂ 2
k = P̂k, this is indeed a projection operator. Define Q̂k = 1 − P̂k to project onto a subspace

orthogonal to the degenerate subspace.
Note further that

[P̂k, Ĥ0]− = [Q̂k, Ĥ0]− = 0

so, we multiply the Schrödinger equation by Q̂k,

(E0
k − Ĥ0)Q̂k |k, nk⟩ = Q̂n(V̂ −∆Ek,nk

) |k, nk⟩ .
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But, Q̂k |k, nk⟩ = |k, nk⟩⊥, so

|k, nk⟩⊥ =
Q̂k

E0
k − Ĥ0

(V̂ −∆Ek,nk
) |k, nk⟩

and since |k, nk⟩ = |k, nk⟩∥ + |k, nk⟩⊥ = P̂k |k, nk⟩+ Q̂k |k, nk⟩

=⇒ |k, nk⟩ = |k, nk⟩∥ +
Q̂k

E0
k − Ĥ0

(V̂ −∆Ek,nk
) |k, nk⟩ .

Solving for |k, nk⟩ gives

|k, nk⟩ =

(
I− Q̂k

E0
k − Ĥ0

(V̂ −∆Ek,nk
)

)−1

|k, nk⟩∥ .

In non-degenerate perturbation theory |k, nk⟩∥ was known since there was only one state

|k⟩∥ = P̂k |k⟩ = |k⟩0 ⟨k|k⟩0 = |k⟩0 (nondegenerate case).

But in degenerate perturbation theory, we don’t know a priori the direction in the E0
k subspace for

the wavefunctions

|k, nk⟩∥ =
d(k)∑
n′
k=1

∣∣k, n′
k

〉
0

〈
k, n′

k

∣∣k, nk

〉︸ ︷︷ ︸
do not know these

,

and in general, we do not know these inner product coefficients. So we need an equation to find
them! Recall that

|k, nk⟩⊥ = Q̂k

(
I− Q̂k

E0
k − Ĥ0

(V̂ −∆Ek,nk
)

)−1

|k, nk⟩∥ .

For the parallel space, we try to project the eigenvalue equation into the degenerate subspace. This
will not solve the whole problem, but will allow us to potentially find the right directions outside
of that space that the perturbation takes us. We have

P̂kV̂ |k, nk⟩ = P̂k(E
0
k − Ĥ0 +∆Ek,nk

) |k, nk⟩
= ∆Ek,nk

P̂k |k, nk⟩
= ∆Ek,nk

|k, nk⟩∥ .

This is not yet in the parallel subspace only, so we use the perturbation expansion expression to
rewrite this inside the parallel subspace via

P̂kV̂

[
I− Q̂k

E0
k − Ĥ0

(V̂ −∆Ek,nk
)

]−1

|k, nk⟩∥ = ∆Ek,nk
|k, nk⟩∥ .

Note how the operator acts on a state in the parallel subspace and results in an eigenvalue equation
that stays in the parallel subspace. This is a valid eigenvalue equation in a d(k)-dimensional space.
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It does not find the exact eigenvalue, but is the first step in solving the whole problem. We can
insert a P̂k next to the ket, since it projects parallel to the k-subspace. So,P̂kV̂

[
I− Q̂k

E0
k − Ĥ0

(V̂ −∆Ek,nk
)

]−1

P̂k −∆Ek,nk

 |k, nk⟩∥ = 0

or, more compactly
(L̂k,nk

−∆Ek,nk
) |k, nk⟩∥ = 0

where

L̂k,nk
≡ P̂kV̂

[
I− Q̂k

E0
k − Ĥ0

(V̂ −∆Ek,nk
)

]−1

P̂k.

Note that we usually wish to re-express this as a finite-dimensional matrix eigenvalue equation to
solve.

2 Perturbative Expansion

This equation allows us to find ∆Ek,nk
and |k, nk⟩∥. To see how this works we write an expansion

in powers of V̂ .
∆Ek,nk

= Ek − E0
k = E

(1)
k,nk

+ E
(2)
k,nk

+ E
(3)
k,nk

+ · · ·

L̂k,nk
= L̂

(1)
k,nk

+ L̂
(2)
k,nk

+ · · ·

|k, nk⟩∥ = |k, nk⟩
(1)
∥ + |k, nk⟩

(2)
∥ + · · ·

It is convention to start from (1) here. At lowest order,

∆Ek,nk
= ∆E

(1)
k,nk

L̂k,nk
= L̂

(1)
k,nk

= P̂kV̂ P̂k

=⇒ (L̂
(1)
k,nk

− E
(1)
k,nk

) |k, nk⟩
(1)
∥ = 0

This gives us
P̂kV̂ P̂k |k, nk⟩

(1)
∥ = E

(1)
k,nk

|k, nk⟩
(1)
∥

which is a “Schrödinger-like” equation in the degenerate subspace. Expand in terms {|k, nk⟩0} to
get ∑

n′′
k

〈
k, n′

k

∣∣∣V̂ ∣∣∣k, n′′
k

〉
0

〈
k, n′′

k

∣∣k, nk

〉(1)
∥ = E

(1)
k,nk

〈
k, n′

k

∣∣k, nk

〉
∥

This is a d(k)× d(k)matrix equation for the first-order energy shift and for the parallel directions.
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3 Basic Example

Let’s take a break to look at the simplest example. This example has the degenerate subspace equal
to the entire space.

Ĥ0 =

(
a 0
0 a

)
, V̂ =

(
V11 V12

V21 V22

)
The first-order matrix equation is

det(V̂ − E(1)I) = 0

det

(
V11 − E(1) V12

V21 V22 − E(1)

)
= 0

E(1) 2 − (V11 + V22)E
(1) + V11V22 − V12V21 = 0

Therefore,

E(1) =
V11 + V22

2
± 1

2

√
(V11 − V22)2 + 4V12V21

We find the directions of |k, nk⟩∥ by finding the eigenvectors (See Homework). Note that this
formula cannot be expanded in a power series for small V . This is one of the reasons why the
degenerate theory is more complicated than the nondegenerate theory.
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4 When Degeneracy is Lifted

Now, suppose the first-order perturbation theory lifts all of the degeneracies E(1)
k,nk

̸= E
(1)
k,n′

k
for all

nk, n
′
k. So,

P̂kV̂ P̂k |k, nk⟩
(1)
∥ = E

(1)
k,nk

|k, nk⟩
(1)
∥

with all E(1)
k,nk

different. Now look at second order.

L̂k = L̂
(1)
k + L̂

(2)
k = P̂kV̂ P̂k + P̂kV̂

Q̂k

E0
k − Ĥ0

(V̂ −∆E
(1)
k,nk

)P̂k

= P̂kV̂ P̂k + P̂kV̂
Q̂k

E0
k − Ĥ0

V̂ P̂k

and the second-order equation is

(P̂kV̂ P̂k−E
(1)
k,nk

) |k, nk⟩
(1)
∥ +(P̂kV̂ P̂k−E

(1)
k,nk

) |k, nk⟩
(2)
∥ +

(
P̂kV̂

Q̂k

E0
k − Ĥ0

V̂ P̂k − E
(2)
k,nk

)
|k, nk⟩

(1)
∥ = 0

Multiply by ⟨k, n′
k| to get

〈
k, n′

k

∣∣ (P̂kV̂ P̂k − E
(1)
k,nk

) |k, nk⟩
(1)
∥ +

〈
k, n′

k

∣∣ (P̂kV̂ P̂k − E
(1)
k,nk

) |k, nk⟩
(2)
∥

+
〈
k, n′

k

∣∣(P̂kV̂
Q̂k

E0
k − Ĥ0

V̂ P̂k − E
(2)
k,nk

)
|k, nk⟩

(1)
∥ = 0

Note ⟨k, nk|k, n′
k⟩

(1)
∥ = δnk,n

′
k
(by convention) and P̂kV̂ P̂k |k, nk⟩

(1)
∥ = E

(1)
k,nk

|k, nk⟩
(1)
∥ . So,

(E
(1)
k,nk

− E
(1)
k,n′

k
)
〈
k, n′

k

∣∣k, nk

〉(2)
∥ +

〈
k, n′

k

∣∣∣∣∣P̂kV̂
Q̂k

E0
k − Ĥ0

V̂ P̂k

∣∣∣∣∣k, nk

〉(1)

∥

− E
(2)
k,nk

δnk,n
′
k
= 0.

To find E
(2)
k,nk

, set n′
k = nk to get

E
(2)
k,nk

=

〈
k, nk

∣∣∣∣∣P̂kV̂
Q̂k

E0
k − Ĥ0

V̂ P̂k

∣∣∣∣∣k, nk

〉(1)

∥

which is the formula for non-degenerate second-order perturbation theory within the basis found
at first order. Once the degeneracy is lifted, subsequent expansions look like the non-degenerate
formulas.
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