Phys 506 lecture 17: Degenerate Perturbation Theory II:
Atomic Fine Structure

1 Nonrelativistic hydrogen

Note, we will use the Gottfried normalization for L, where £ is factored out: Lgotfried = %
The Hamiltonian for the hydrogen atom is
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2 Relativistic corrections to H

1.) Relativistic effects in the kinetic energy
In reality, the kinetic enemy is \/p2ct + p2c? — puc?
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2.) Spin-orbit coupling

Since the proton and electron both rotate about their center of mass, the electron sees a moving
proton in its rest frame. This moving charge creates a magnetic field that the election interacts with.
We describe it as follows. The electron magnetic moment gives an energy

wH, with p = magnetic moment not reduced mass and H = magnetic field not Hamiltonian
eh . .. .
u= o, with o = Pauli spin matrix
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which has an extra factor of 1 multiplying it (called the Thomas precession factor which is very
hard to derive and arises from the fact that the circular motion is accelerating). This is called spin-
orbit coupling.
Note that there is another term called the Darwin term as well. We will not cover this term in

detail. It is zero except in s-wave states, and it gives the result of the spin-orbit coupling term in
the limit as s — 0, which we will just implement by hand.

We add the term

3 Perturbation theory for relativistic effects

So,
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where S = & /2 because of the Gottfried normalization.
The relativistic perturbation p* is a scalar and commutes with all angular momenta and spin.
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But, we also have that
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Then, o R
[L-S,L.+S.]=0.

So, a set of mutually commuting variables is jz, jz,ﬁz, S2? (Note that J?2 = 12 + 2L -S + S2

commutes with L - S too ). So, we label the states by |j,m;l, s = %>
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We use spectroscopic notation to label the states:

nl; n = principal quantum number
[=8S—-(1=0),P—=>(1=1),D—-(1=2), F—(=23)
j = half odd integer

Like 1Sy, 2510 2P35 2P etc

Since J?=(L+S)?=L2+2L-S+8§?
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Wehave L-S= % (a useful identity).
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The radial integral is known (nl|%3|nl> = %m for ! # 0.

For the kinetic energy term, we have
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These radial integrals are also known
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4 Final results

So we get
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Similarly, we find
R 1 h2 ,LL2€41 1 l j:l—f—l
nlym|Vso|nljm) = - — x :
(nljm|Vso|nljm) Am2c2 KA n3(l+1)(l+%)l —-1-1 j= _%
:_anzl 1 X : j:lJr%
20+ D)4+l | -l-1 j=1-13

Now, we examine the j = [ + % case:

Recall EY < 0 so the shift is negative (Gottfried’s book has a typo).

Comments:
1.) Even though this shift wasn’t calculated for j = %, [ = 0, it holds for that case as well (we

need to evaluate the Darwin term to prove it);

2.) The lowest excited states are 2P, /, and 2S5/, which are not split from each other since the
shift depends only on j. Experimentally they are split (called the Lamb shift), which can be un-
derstood only with quantum electrodynamics (field theory);

3.) By choosing the jmis basis we did not need to actually use degenerate perturbation theory
because we found the || subspace.

In the next lecture, we will need the degenerate formalism when we examine the Zeeman effect.
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Figure 1: Hierarchy of the splittings of the n = 2 shell of hydrogen. For Hy, the 25 and 2p levels are
degenerate. The fine structure splits the 2P 5 lies above the still degenerate 25/, and 2P /, states
by 0.453 x 10~* éV. Adding in the Lamb shift, splits the 25, ; (above) and 2P, (below) with a
splitting of 4 x 107¢ &V.




