
Phys 506 lecture 17: Degenerate Perturbation Theory II:
Atomic Fine Structure

1 Nonrelativistic hydrogen

Note, we will use the Gottfried normalization for L̂, where ℏ is factored out: L̂Gottfried = L̂
ℏ .

The Hamiltonian for the hydrogen atom is

Ĥ0 =
p̂2

2µ
− e2

r
µ =

mrmp

mr +mp
= 0.9995me = reduced mass

E0
n = −α2µc2

2n2
n = 1, 2, 3, · · ·

α =
e2

ℏc
=

1

137.04
= fine structure constant

we also write

E0
n = − e2

2a0n2
, where a0 =

ℏ2

µe2
= Bohr radius = 0.529Å

E0
1 = −13.6eV

2 Relativistic corrections to Ĥ0

1.) Relativistic effects in the kinetic energy
In reality, the kinetic enemy is

√
µ2c4 + p2c2 − µc2

= µc2
[
1 +

1

2

p2

µ2c2
− 1

8

p4

µ4c4
+ · · ·

]
− µc2

=
p2

2µ
− 1

8

p4

µ3c2

So V̂rel = −1

8

p̂4

µ3c2
+ · · ·

2.) Spin-orbit coupling
Since the proton and electron both rotate about their center of mass, the electron sees a moving

proton in its rest frame. Thismoving charge creates amagnetic field that the election interacts with.
We describe it as follows. The electron magnetic moment gives an energy

µ·H, with µ = magnetic moment not reduced mass and H = magnetic field not Hamiltonian

µ =
eℏ

2mec
σ, with σ = Pauli spin matrix
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H = −1

c
v ×E =

1

ec
v × er

dV

dr︸︷︷︸
Coulomb potential energy

= − ℏ
emec︸ ︷︷ ︸

from Gottfried normalization

L
1

r

dV

dr
, with V (r) = −e2

r
.

We add the term
1

4

(
ℏ
mc

)2

L · σ1
r

dV

dr
,

which has an extra factor of 1
2 multiplying it (called the Thomas precession factor which is very

hard to derive and arises from the fact that the circular motion is accelerating). This is called spin-
orbit coupling.

Note that there is another term called the Darwin term as well. We will not cover this term in
detail. It is zero except in s-wave states, and it gives the result of the spin-orbit coupling term in
the limit as s → 0, which we will just implement by hand.

3 Perturbation theory for relativistic effects

So,
Ĥ = Ĥ0 + V̂

with
Ĥ0 =

p̂2

2µ
− e2

r̂

and

V̂ = −1

8

p̂4

µ3c2
+

1

2

(
ℏ
mc

)2

L̂ · Ŝ1
r̂
,

where Ŝ = σ/2 because of the Gottfried normalization.
The relativistic perturbation p̂4 is a scalar and commutes with all angular momenta and spin.

Note that

L̂ · Ŝ =
L̂+Ŝ− + L̂−Ŝ+

2
+ L̂zŜz.

So,

[L̂ · Ŝ, L̂z] =
−L̂+Ŝ− + L̂−Ŝ+

2
̸= 0.

But, we also have that

[L̂ · Ŝ, Ŝz] =
L̂+Ŝ− − L̂−Ŝ+

2
̸= 0.

Then,
[L̂ · Ŝ, L̂z + Ŝz] = 0.

So, a set of mutually commuting variables is Ĵ2, Ĵz, L̂
2, Ŝ2, (Note that Ĵ2 = L̂2 + 2L̂ · Ŝ + Ŝ2

commutes with L̂ · Ŝ too ). So, we label the states by |j,m; l, s = 1
2⟩.
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We use spectroscopic notation to label the states:

nlj n = principal quantum number
l = S → (l = 0), P → (l = 1), D → (l = 2), F → (l = 3)

j = half odd integer
Like 1S1/2 2S1/2 2P3/2 2P1/2 etc.

Since Ĵ2 = (L̂+ Ŝ)2 = L̂2 + 2L̂ · Ŝ+ Ŝ2

We have L̂ · Ŝ =
Ĵ2 − L̂2 − Ŝ2

2
(a useful identity).

Hence
⟨jm; ls = 1

2 |L̂ · Ŝ|jm; ls = 1
2⟩ =

j(j + 1)− l(l + 1)− 3
4

2

So

V̂SO =
1

4

ℏ2

m2c2

[
j(j + 1)− l(l + 1)− 3

4

]
e2

r̂3
when acting on these states.

Now, since j = l ± 1
2 , we have

V̂SO =
1

4

ℏ2e2

m2c2
1

r̂3

[
(l ± 1

2
)(l + |3/21/2)− l(l + 1)− 3

4

]
=

1

4

ℏ2e2

m2c2
1

r̂3

{
+l j = l + 1

2

−l − 1 j = l − 1
2

⟨nljm|V̂S0|nljm⟩ = 1

4

(
ℏ
ma

)2

e2⟨nl| 1
r̂3
|nl⟩ ×

{
l j = l + 1

2

−l − 1 j = l − 1
2

The radial integral is known ⟨nl| 1
r̂3
|nl⟩ = 1

a30

1
n3(l+1)(l+ 1

2
)l
for l ̸= 0.

For the kinetic energy term, we have

V̂rel = −1

8

p̂4

µ3c2
= −

[
Ĥ0 +

e2

r̂

]2
· 1

2µc2
another useful trick

⟨nljm|V̂rel|nljm⟩ = −⟨nljm|
[
Ĥ0 +

e2

r̂

]2
|nljm⟩ 1

2µc2

= −
[
E0

n
2
+ 2E0

ne
2⟨nl|1

r̂
|nl⟩+ e4⟨nl| 1

r̂2
|nl⟩

]
1

2µc2
.

These radial integrals are also known

⟨nl|1r̂ |nl⟩ =
1

a0n2

⟨nl| 1
r̂2
|nl⟩ = 1

a20n
3(l + 1

2)

and
E0

n = − e2

2a0n2
.
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4 Final results

So we get

⟨nljm|V̂rel|nljm⟩ = − e4

4a20

[
1

n4
− 4

n4
+

4

n3(l + 1
2)

]
1

2µc2

= E0
n

e2

a0

1

n2

[
n

l + 1
2

− 3

4

]
1

µc2

= E0
nα

2 1

n2

[
n

l + 1
2

− 3

4

]
and α =

e2

ℏc
.

Similarly, we find

⟨nljm|V̂SO|nljm⟩ = 1

4

ℏ2

m2c2
µ2e4

ℏ4
1

n3

1

(l + 1)(l + 1
2)l

×

{
l j = l + 1

2

−l − 1 j = l − 1
2

= −E0
nα

2 1

n

1

2(l + 1)(l + 1
2)l

×

{
l j = l + 1

2

−l − 1 j = l − 1
2

Now, we examine the j = l + 1
2 case:

En = E0
n

(
1 +

α2

n2

[
n

3
− 3

4
− n

(j + 1
2)2j

])

= E0
n

(
1 +

α2

n2

[
n

j + 1
2

− 3

4

])

while the j = l − 1
2 case is given by:

En = E0
n

(
1 +

α2

n2

[
n

j + 1
− 3

4
+

n(j + 3
2)

2(j + 3
2)(j + 1)(j + 1

2)

])

= E0
n

(
1 +

α2

n2

[
n

j + 1
2

− 3

4

])
.

Recall E0
n < 0 so the shift is negative (Gottfried’s book has a typo).

Comments:
1.) Even though this shift wasn’t calculated for j = 1

2 , l = 0, it holds for that case as well (we
need to evaluate the Darwin term to prove it);

2.) The lowest excited states are 2P1/2 and 2S1/2 which are not split from each other since the
shift depends only on j. Experimentally they are split (called the Lamb shift), which can be un-
derstood only with quantum electrodynamics (field theory);

3.) By choosing the jmls basis we did not need to actually use degenerate perturbation theory
because we found the ∥ subspace.

In the next lecture, wewill need the degenerate formalismwhenwe examine the Zeeman effect.
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Figure 1: Hierarchy of the splittings of the n = 2 shell of hydrogen. For Ĥ0, the 2s and 2p levels are
degenerate. The fine structure splits the 2P3/2 lies above the still degenerate 2S1/2 and 2P1/2 states
by 0.453 × 10−4 eV. Adding in the Lamb shift, splits the 2S1/2 (above) and 2P1/2 (below) with a
splitting of 4× 10−6 eV.
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