
Phys 506 lecture 18: Hydrogen in a Magnetic
Field

1 Introduction
The effect of a small magnetic field is smaller than the fine-structure splitting,
so we can solve the problem in two steps:

1. Find the fine structure.

2. Perturb the fine structure due to the field.

This weak field regime is called the Zeeman regime. When H is large, the fine
structure is small compared to the energy shifts due to the field (called the
Paschen-Back regime). We will solve the general case and then extract the lim-
iting behavior.

2 Setting up the perturbation
The orbital magnetic moment of the electron is:

µorb = −µ0L̂,

whereµ0 = eℏ
2mc is the Bohrmagneton andhas the value of 0.579×10−8 eV/gauss.

The spin magnetic moment is:

µspin = −2µ0Ŝ.

It is the extra factor of 2 that makes life difficult.

V̂mag = µ0H · (L̂+ 2Ŝ) = µ0H · (Ĵ+ Ŝ).

Choose the z-direction alongH, soH = Hez . Then Ŝ2, L̂2, L̂z , and Ŝz commute
with V̂mag. But L̂z and Ŝz do not separately commute with V̂fine structure, only the
sumdoes. This implies the fieldwillmix states, andwe do not know the parallel
directions in the degenerate subspace.

One important note: L̂z+2Ŝz is an even parity operator, so it cannot connect
states with different parity. Therefore ℓmust be the same or differ by a multiple
of 2, as ℓ+ 1 is different parity from ℓ. This reduces a lot of our work.
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3 Symmetry analysis
We have eight degenerate energy levels 2P3/2, 2P1/2, 2S1/2 with degeneracies
of 4, 2, and 2 respectively. Because of the parity argument, the 2S1/2 state can-
not connect to 2P3/2 or 2P1/2. Therefore S is a parallel direction. Similarly,
2P3/2m = ±3/2 cannot couple, since Ĵz is a good quantum number, as L̂z + Ŝz

commutes with Ĥ . So only 2P3/2(m=± 1
2 and 2P1/2(m=± 1

2 ) couple (positive
to positive and negative to negative).

Hence, we reduce from an 8× 8 subspace to four 1× 1 subspaces:

2P3/2(m= 3
2 ), 2P3/2(m=− 3

2 ), 2S1/2(m= 1
2 ), 2S1/2(m=− 1

2 )

and two 2× 2 subspaces:

2P3/2(m= 1
2 ), 2P1/2(m= 1

2 )

2P3/2(m=− 1
2 ), 2P1/2(m=− 1

2 ).

4 Calculate the perturbative corrections
First, examine the 1×1 subspaces, which can be analyzed with non-degenerate
perturbation theory.

∆Emag = ⟨nljm|(Ĵz + Ŝz)|nljm⟩µ0H = µ0H
(
m+ ⟨nljm|Ŝz|nljm⟩

)
.

The radial part of the overlap is 1. The angular momentum is tricky—need to
change the basis from jmsl to lmlsms:

⟨slm|szlzsms⟩ =
∑
mlms

⟨sl|lmlsms⟩⟨lmlsms|szlzsms⟩ =
∑
mlms

|⟨slm|lmlsms⟩|2

where ⟨slm|lmlsms⟩ are your Clebsch-Gordon coefficients.
We already showed:
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so for j = ℓ+ 1/2, only two mℓ terms contribute to each sum and so we get:
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and for j = ℓ− 1
2 , only twoms terms contribute, and we get:

=
1

2

ℓ−m+ 1
2

2ℓ+ 1
+

1

2

ℓ+m+ 1
2

2ℓ+ 1
= − m

2ℓ+ 1
.

So:
⟨sℓjm|sz|sℓjm⟩ = ± m

2ℓ+ 1

for j = ℓ± 1
2 , and:

∆Emag = µ0H

(
m+

m

2ℓ+ 1

)
= µ0Hm

(
2ℓ+ 1± 1

2ℓ+ 1

)
.

Now recall:
∆EFS = E0

2

α2

n2

[
1

j + 1
2

− 3

4

]
.

So: {
∆E(2P3/2,m = ± 3

2 ) = E0
2
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4

[
1
4
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+ µ0H

3
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2
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4
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]
+ µ0H

1
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2
5α2

16 + µ0H.

Now onto the 2× 2 cases. The diagonal fine-structure matrix elements are:{
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4
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4
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2

16 , j = 3
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∆2E0
2
α2

4
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2
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2 .

The diagonal magnetic matrix elements are:

µ0Hm
2ℓ+ 1± 1

2ℓ+ 1
=

{
± 2

3µ0H j = 3
2 , since ± 1

2 × 4
3

± 1
3µ0H j = 1

2 , since ± 1
2 × 2

3

The off-diagonal elements are:
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Since only the two mℓ values contribute, we get:
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Hence, for m = ± 1
2 , ℓ = 1, we get:

= −1

3

√
4

4
− 1

4
= −

√
2

3

Hence, the off diagonal elements are −µ0H
√
2/3. We can write the matrix in

full, subtract off ϵI and take its determinant, setting it to zero:

det

(
α2E0

2

16 + 2
3µ0H − ϵ −µ0H

√
2
3

−µ0H
√
2
3

5α2E0
2

16 ± 1
3µ0H − ϵ

)
= 0.

to find:

ϵ2 − ϵ

(
3

8
α2E0

2 + µ0H

)
+

5

256
α4(E0

2)
2 ± 11

48
α2E0

2µ0H = 0

Solving for ϵ gives:

ϵ =
3

16
α2E0

2 ± 1

2
µ0H ± 1

2

√(
1

16
α2E0

2

)2

∓ 1

2
α2E0

2µ0H + µ2
0H

2.

The first and third± and∓ correspond tomj = ± 1
2 . The second± corresponds

to the fact that we have two roots. As a result, we have:∆E(2P3/2&2P1/2,mj =
1
2 ) =

3
16α

2E0
2 ± 1
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2

√(
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2
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2α
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2
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2 ) =
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2
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1
16α
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2
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2

5 Limiting behavior
In the small H limit, we get the following simplifications. For mj = ± 1

2 , we
have:
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And for mj = − 1
2 , we have:
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1

16
α2E2

0 − 2

3
µ0H.

which can be read of the above matrix with H small. In the large H limit, we
instead get for mj = + 1

2 :

µ0H

2
± µ0H

2
=

{
µ0H

0

and for mj = − 1
2 :

−µ0H

2
± µ0H

2
=

{
−µ0H

0

This is Ĵz ± Ŝz when we think of Ĵz and Ŝz as independent.
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