
Phys 506 lecture 19: Degenerate Perturbation Theory IV: Stark
effect & spin examples

1 Hydrogen atom in an electric field

Consider a hydrogen atom in an external electric field:

Ĥ0 =
p̂2

2µ
− e2

r̂
, and V̂FS = −1

8

p̂4

µ3c2
+

1

2

(
ℏ
mc

)2

L̂ · Ŝe2

r̂3

and if we choose the electric field to be in the z-direction, we have that

V̂Stark = eε · r̂ = eεz = eεr cos θ.

What are good quantum numbers? For Ĥ0 :

L̂2, L̂z, Ŝ
2, Ŝz, Ĵ

2, Ĵz

For Ĥ0 + ĤFS :
L̂2, Ŝ2, Ĵ2, Ĵz

and for Ĥ0 + ĤFS + ĤStark :
Ŝ2, Ĵz.

V̂Stark has odd parity so it connects states with different parity (l odd with l even).

Since the ground state is an s-wave, there is no linear Stark shift. But, for n ≥ 2 different l are
degenerate for Ĥ0 so a first order shift is possible.

The ground state has n = 1, l = 0, s = 1
2 , and j = 1

2 with degeneracy coming from the fact
thatmj = ±1

2 . Butmj is a good quantum number so there is no first order shift. So,

Egs = EFS + E
(2)
Stark

since E(1)
Stark = 0. Then,

E
(2)
Stark =

∑
njl,n̸=1

|
〈
njmsl

∣∣∣V̂Stark

∣∣∣n=1, j=1
2 ,mj , l=0

〉
|2

E
(0)
1 − E

(0)
njl

The smallest value of the denominator is for n = 2. The denominator goes like ∼ e2

a0
and the

numerator goes like e2ε2a20 so the shift is on the order of ε2a30.

|E(2)| ≤ e2ε2

E
(0)
1 − E

(0)
2

∑
njlm′

〈
1

2
1 mj 0

∣∣∣∣z∣∣∣∣njm′l

〉〈
njm′l

∣∣∣∣z∣∣∣∣12 1 mj 0

〉

1



Quantum Mechanics II Lecture 19

But, by completeness ∑
njlm′

∣∣njm′l
〉 〈

njm′l
∣∣ = I

so,

|E(2)| ≤ e2ε2

E
(0)
1 − E

(0)
2

〈
1
1

2
m 0

∣∣∣∣z2∣∣∣∣1 1

2
m 0

〉
Therefore,

|E(2)| ≤ 8

3
ε2a30.

This method is similar to the method of Dalgarno and Lewis (Shiff pg 266) which you may want
to look at.

2 Strong field limit

Here, we can neglect fine structure. The first nontrivial case is n = 2. This gives us j = 3
2 ,

1
2 ,

mj = ±3
2 (which have no linear shift) and mj = ±1

2 (which can mix states). It turns out that
mj = ±1

2 are degenerate and called Kramer’s doublets. This gives us three states |njml⟩:∣∣∣∣2 3

2

1

2
1

〉
,

∣∣∣∣2 1

2

1

2
1

〉
,

∣∣∣∣2 1

2

1

2
0

〉
In the degenerate subspace we have E

(0)
2 0 a

0 E
(0)
2 b

a∗ b∗ E
(0)
2


which is similar to a HW problem. Note that

a = eε

〈
2
3

2

1

2
1

∣∣∣∣z∣∣∣∣2 1

2

1

2
0

〉
= a∗

b = eε

〈
2
1

2

1

2
1

∣∣∣∣z∣∣∣∣2 1

2

1

2
0

〉
= b∗

After converting to wavefunctions and integrating, one can find

a = −
√
6a0eε

b = −
√
3a0eε

Now, we find the eigenvalues,

det

E0
2 − E 0 a
0 E0

2 − E 1√
2
a

a 1√
2
a E0

2 − E

 (E0
2 − E)3 − (E0

2 − E)a2
3

2
= 0

=⇒ E = E0
2 , E = E0

2 ± 3a0eε
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3 Weak field limit

We normally take relativistic effects and spin orbit coupling first then add the Stark effect but we
can do it all at once. The 2p3/2 level has energy E3/2 and the 2p1/22s1/2 level has energy E1/2.

det

E3/2 0 a

0 E1/2 − E 1√
2
a

a 1√
2
a E1/2 − E

 = (E3/2 −E)(E1/2 −E)2 − (E1/2 −E)|a|2 − (E3/2 −E)
|a|2

2
= 0

which we solve to get the roots. The algebra is straightforward but not too illuminating.

4 Spin example

Consider 3 spins on a triangle:

Ĥ = A(Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3 + Ŝ3 · Ŝ1) +BSz
1

for a small B-field. Here Jz is a good quantum number. Here there are 23 = 8 states labeled with
J,mj . j = 3

2 has 4 states, j = 1
2 has 2 states, and j = 1

2 has 2 states. Use S−
tot = S−

1 + S−
2 + S−

3 to get
all of the states. ∣∣∣∣j = 3

2
,mj =

3

2

〉
= |↑↑↑⟩∣∣∣∣j = 3

2
,mj =

1

2

〉
=

1√
3
(|↓↑↑⟩+ |↑↓↑⟩+ |↑↑↓⟩)∣∣∣∣j = 3

2
,mj = −1

2

〉
=

1√
3
(|↓↓↑⟩+ |↓↑↓⟩+ |↑↓↓⟩)∣∣∣∣j = 3

2
,mj = −3

2

〉
= |↓↓↓⟩

Then, ∣∣∣∣j = 1

2
,mj =

1

2

〉
=

1√
2
(|↓↑↑⟩ − |↑↓↑⟩) ≡ |1⟩∣∣∣∣j = 1

2
,mj = −1

2

〉
=

1√
2
(|↓↑↓⟩ − |↑↓↓⟩)

and ∣∣∣∣j = 1

2
,mj =

1

2

〉′
=

1√
6
(|↓↑↑⟩+ |↑↓↑⟩ − 2 |↑↑↓⟩) ≡ |2⟩∣∣∣∣j = 1

2
,mj = −1

2

〉′
=

1√
6
(|↓↑↓⟩+ |↑↓↓⟩ − 2 |↓↓↑⟩)

Note S1 ·S2+S2 ·S3+S3 ·S1 =
1
2((S1+S2+S3)

2−S2
1 −S2

2 −S2
3). Now, consider the j = 1

2 ,mj =
1
2

state.
E0

0 = −3

4
A
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which is two-fold degenerate. Then,

⟨1|Sz
1 |1⟩ = 0

⟨1|Sz
1 |2⟩ =

1√
2
(⟨↓↑↑| − ⟨↑↓↑|) 1√

6
· 1
2
(|↓↑↑⟩+ |↑↓↑⟩ − 2 |↑↑↓⟩)

= − 1

2
√
3

⟨2|Sz
1 |1⟩ = − 1

2
√
3

⟨2|Sz
1 |2⟩ =

1

6
· 1
2
(⟨↓↑↑|+ ⟨↑↓↑| − 2 ⟨↑↑↓|)(|↓↑↑⟩+ |↑↓↑⟩ − 2 |↑↑↓⟩)

=
1

3

Then, we find the eigenvalues

det

(
−3

4A− E − B
2
√
3

− B
2
√
3

−3
4A+ B

3 − E

)
= 0

E2 − E

(
−3

2
A+

B

3

)
+

9

16
A2 − AB

4
− B2

12
= 0

Hence,
E = −3

4
A+

B

6
± 1

3
B

Compare with the exact solution which comes from a cubic equation.

det

−3
4A− E − B

2
√
3

− B√
6

− B
2
√
3

−3
4A+ 1

3B − E − B
3
√
2

− B√
6

− B
3
√
2

3
4A+ 1

6B − E

 = 0

Using Mathematica gives

E = − 3

4
A+

1

2
B✓

E = − 1

4

√
9A2 + 4AB + 4B2 = −3

4
A− 1

6
B + · · ·✓

E =
1

4

√
9A2 + 4AB + 4B2 =

3

4
A+

1

6
B + · · ·
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