
Phys 506 lecture 2: The Operator Identities

It turns out that there are five critically important operates identities that we need
to know to do just about anything in quantum mechanics.

They are the Leibniz (or product rule) identity, the Hadamard lemma (and braiding
identity), the exponential reordering identity, the Baker-Campbell-Hausdorff identity
and the exponential disentangling identity.

All but one of them are quite elementary to prove. One is hard. Really hard. So
we only do it for special cases.

1 Leibniz product rule
1.) The Leibniz or product rule

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ

Proof:

[Â, B̂C] = ÂB̂Ĉ − B̂ĈÂ

add 0 = ÂB̂Ĉ −B̂ÂĈ + B̂ÂĈ︸ ︷︷ ︸
=0

−B̂ĈÂ

regroup = (ÂB̂ − B̂Â)Ĉ + B̂(ÂĈ − ĈÂ)

= [Â, B̂]Ĉ + B̂[Â, Ĉ]

It acts just like a differentiation product rule, where the single operator in the com-
mutator is like a derivative and the product of operators is like a product of functions.
This comparison is actually very deep, as one can define derivatives via the Leibniz
rule and avoid having to use limits. I won’t go into the details of that here though.

It has other forms too, like

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [
ˆ⃗
B, Ĉ]B̂

.
Related to this is the Jacobi identity

[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0
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which I don’t find I use very much. This can be proven just by writing it out

Â[B̂, Ĉ]− [B̂, Ĉ]Â+ B̂[Ĉ, Â]− [Ĉ, Â]B̂ + Ĉ[Â, B̂]− [Â, B̂]Ĉ

=ÂB̂Ĉ − ÂĈB̂ − B̂ĈÂ+ ĈB̂Â+ B̂ĈÂ− B̂ÂĈ

− ĈÂB̂ + ÂĈB̂ + ĈÂB̂ − ĈB̂Â− ÂB̂Ĉ + B̂ÂĈ

=0

2 Hadamard lemma
2.) Next up is the Hadamard lemma:

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + · · ·

=
∞∑
n=0

[· · · (Â, B̂] · · · ]n︸ ︷︷ ︸
n-fold nested commutator

1

n!

Proof: Consider

f(x) = exÂB̂e−xÂ

f(0) = B̂

f ′(0) = ÂexÂB̂e−xÂ − exÂB̂e−xÂÂ
∣∣∣
x=0

= [Â, B̂]

f ′′(0) = Âf ′(0)− f ′(0)Â

= [Â, [Â | B̂]].

Now, in general, if we assume

f (n)(0) = [Â, · · · [Â, B̂] · · · ]n
then f (n+1)(0) = Âf (n)(0)− f (n)(0)Â

= [Â, · · · [Â, B̂] · · · ]n+1.

Then using Taylor’s theorem with x = 1 gives us the proof for the Hadamard lemma:

eÂB̂e−Â =
∞∑
n=0

1

n!
[Â, [· · · [Â, B̂] · · · ]n.

The braiding identity is even more powerful. It comes from the fact that

eÂB̂ne−Â = eÂB̂e−ÂeÂB̂e−Â · · · eÂB̂e−Â︸ ︷︷ ︸
n triples

= (eÂB̂e−Â)n.
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Hence, any operator series (or any function that an be expressed as a series) satisfies

f(B̂) =
∑
n

cnB̂
n.

then
eÂf(B̂)e−Â =

∑
n

cne
ÂB̂ne−Â =

∑
n

cn(e
ÂB̂e−Â)n

= f
(
eÂB̂e−Â

)
so

eÂf(B̂)e−Â = f
(
eÂB̂e−Â

)
= f

(
∞∑
n=0

1

n!
[Â, · · · [Â, B̂] · · · ]n

)
This is the braiding relation.

3 Exponential re-ordering identity
3.) The exponential reordering identity is most powerful in simple cases as we will see.

If I have eÂeB̃ and I want to interchange the order, what do I get?
In other words, eÂeB̂ = what eÂ ? The way to solve that is with braiding:

eÂeB̂e−Â = e(e
ÂB̂e−Â)

= eB̂+[Â,B̂]+ 1
2
[Â,[Â,B̂]]+···.

Multiply both sides by eÂ on the right

eÂeB̂ = eB̂+[Â,B̂]+ 1
2
[Â,[Â,B̂]]+···eÂ

In general, this is a complicated mess, but what if [Â, [Â, B̂]] = 0, like what happens
if Â = x̂ and B̂ = p̂ ?
Then, we get

eÂeB̂ = eB̂+[Â,B̂]eÂ

But if [B̂, [Â, B̂]] = 0 too (as it would in our example) then we have

eÂeB̂ = e[Â,B̂]eB̂eÂ

when [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0

This is a very powerful identity that comes up often.
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4 Baker-Campbell-Hausdorff formula
4.) We are now ready for the hard identity, Baker-Campbell- Hausdorff. It asks the
question

eÂeB̂ = ewhat ? ,

which is kind of half way to the exponential re-ordering identity. But it is much
harder to work out. In fact, it leads to an infinite series of commutators, just like the
Hadamard lemma, but the coefficients have no regular structure, even though one can
find equations that determine them.

As a warmup, let’s work of the case when [Â, B̂] commutes with Â and B̂.
This is called the Weyl form of the identity.

First define

f(λ) = e−λÂeλ(Â+B̂)e−λB̂

df(λ)

dλ
= −Âe−λÂeλ(Â+B̂)e−λB̂ + e−λÂ(Â+ B̂)eλ(Â+B̂)e−λB̂

− e−λÂeλ(Â+B̂)e−λB̂B̂

But Âe−λÂ = e−λÂÂ and B̂eλ(Â+B̂) can be rewritten with Hadamard as follows:

eλ(Â+B̂)e−λ(Â+B̂)B̂eλ(Â+B̂)

= eλ(Â+B̂)(B̂ − λ[Â+ B̂, B̂] +
λ2

2
[Â+ B̂, [Â+ B̂, B̂]].

= eλ(Â+B̂)(B̂ − λ[Â, B̂] + 0)

So
df(λ)

dλ
= −λ[Â, B̂]f(λ) ⇒ f(λ) = e−

λ2

2
[Â,B̂]f(0)

or
e−

λ2

2
(Â,B̂] = e−λÂeλ(Â+B̂)e−λB̂.

Multiply on left with eλÂ and on right with eλB̂ to get

eλÂ e−
λ2

2
[Â,B̂]︸ ︷︷ ︸

commutes with everything

eλB̂ = eλ(Â+B̂)

So eλÂeλB̂ = eλ(Â+B̂)+λ2

2
[Â,B̂]. Now set λ = 1 to obtain the final result

eÂeB̂ = eÂ+B̂+ 1
2
[Â,B̂]

when [Â, [Â, B̂]] = [B̂[Â, B̂]] = 0

This is the easy case of BCH and the version most people know.
Now we work out the general case! We need another identity (called Sneddon’s

formula)
d

dx
eÂ(x) =

∫ 1

0

dye(1−y)Â(x)dÂ(x)

dx
eyÂ(x).

4



This looks weird, but it takes this form because[
Â(x),

dÂ

dx

]
̸= 0 in general.

Recall that with operators, we have d
dx
eÂ(x) = d

dx

[
1 + Â+ 1

2
Â2 + 1

6
Â3 + · · ·

]
= Â′ +

1

2
(Â′Â+ ÂÂ′) +

1

6
(Â′Â2 + ÂÂ′Â+ Â2Â′) · · ·

because we cannot switch orders of the derivative and the operator. The nth order
terms in the series will have (m) powers of ÂÂ′ and (n−m− 1) powers of Â; they are
divided by n!. We can rewrite this as

∞∑
n=0

∞∑
m=0

1

(n+m+ 1)!
ÂnÂ′Âm

Now expand each term in the integrand∫ 1

0

dy
∞∑
n=0

(1− y)nÂn

n!
Â′

∞∑
m=0

ym

m!
Âm

=
∞∑
n=0

∞∑
m=0

ÂnÂ′Âm

n!m!

∫ 1

0

dy(1− y)nym︸ ︷︷ ︸
Beta function β(m,n)

=
∞∑
n=0

∞∑
m=0

ÂnÂ′Âm

n!m!
· n!m!

(n+m+ 1)!

=
∞∑
n=0

∞∑
m=0

ÂnÂ′Âm

(n+m+ 1)!
.

So
d

dx
eÂ =

∫ 1

0

dye(1−y)ÂÂ′eyÂ.

Now, multiply on the left by e−Â to get

e−Â d

dx
eÂ =

∫ 1

0

dy e−yÂÂ′eyÂ︸ ︷︷ ︸
Hadamard

=

∫ 1

0

dy(Â′ − y[Â, Â′] +
y2

2
[Â, [Â, Â′]] + · · · )

= Â′ +
1

2

[
Â′, Â

]
+

1

6

[(
Â′, Â

]
, Â
]
+ · · · .

To obtain the general form of BCH, we define

exÂexB̂ = eĜ(x) = exĜ1+x2Ĝ2+x3Ĝ3+···

e−xB̂e−xÂ d

dx

(
exÂexB̂

)
= e−Ĝ(x) d

dx
eĜ(x)
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The LHS can be evaluated directly [ Note e−xB̂e−xÂ = e−Ĝ[x) ]

e−xB̂e−xÂ d

dx

(
exÂexB̂

)
= e−xB̂e−xÂ

(
ÂexÂexB̂ + exÂexB̂B̂

)
= B̂ + e−xB̂ÂexB̂

= B̂ + Â− x[B̂, Â] +
x2

2
[B̂, [B̂, Â]] + · · ·

But we also have e−Ĝ(x) d
dx
eĜ(x) = G1 + 1

2
[Ĝ′, G] + 1

6
[[G,G′], G] + · · ·

Use a power series for Ĝ(x) = xĜ1 + x2Ĝ2 + x3Ĝ3 + · · ·

G′ = Ĝ1 + 2xĜ2 + 3x2Ĝ3 + · · ·
1

2
[G′, G] =

1

2
[Ĝ1 + 2xĜ2 + 3x2Ĝ3 + · · · , xĜ1 + x2Ĝ2 + x3Ĝ3 · · · ]

=
1

2
(x2[Ĝ1, Ĝ2] + 2x2[Ĝ2, Ĝ1]

+ x3[Ĝ1, Ĝ3] + 3x3[Ĝ3, Ĝ1]) + · · ·

=
1

2
x2[Ĝ2, Ĝ1] + x3[Ĝ3, Ĝ1] + · · ·

1

6
[[G′, G], G] =

1

6
[[Ĝ1, x

2Ĝ2], xĜ1] =
x3

6
[[Ĝ1, Ĝ2], Ĝ1]

So we have

e−Ĝ(x) d

dx
eĜ(x) = Ĝ1 + 2xĜ2 + 3x2Ĝ3 +

x2

2
[Ĝ2Ĝ1] +O(x3),

but this equals

Â+ B̂ + x[Â, B̂] +
x2

2
[B̂, [B̂, Â]] + · · · .

So
G1 = Â+ B̂

G2 =
1

2
[Â, B̂]

3G3 +
1

2
[G2, G1] =

1

2
[B̂, [B̂, Â]]

G3 =
1

6
[B̂, [B̂, Â]]− 1

6

[
1

2
[Â, B̂], Â+ B̂

]
=

1

6
[B̂, [B̂, Â]] +

1

12
[Â, [Â, B̂]]− 1

12
[B̂, [B̂, Â]]

G3 =
1

12
[B̂, [B̂, Â]] +

1

12
[Â, [Â, B̂]].

But if we set (x = 1), then

eÂeB̂ = eĜ(x=1) = eĜ1+Ĝ2+Ĝ3+···

So eÂeB̂ = eÂ+B̂+ 1
2
[Â,B̂]+ 1

12
[Â,[Â,B̂])+ 1

12
[B̂,(B̂,Â])+...

which is the BCH. We can work out higher order terms one by one, but it is painful.
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5 Exponential disentangling identity
5.) The fifth identity is the exponential disentangling and it uses a theorem from Lie
algebras:
Any identity expressed in terms of exponentials of the generators of a Lie algebra that
is proved for one faithful representation holds in all representations.

So, the identity we worked at last time

exp

[
i
2v⃗ · s⃗
ℏ

]
= exp

[
α
2Ŝ+

ℏ

]
exp

[
β
2Ŝz

ℏ

]
exp

[
γ
2Ŝ−

ℏ

]

with α, β, and γ determined as before, holds for any angular momentum representation!

This is amazingly powerful. We proved something about Pauli spin matrices and
it holds or all j!! We will use this again later.
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