Phys 506 lecture 20: Introduction to scattering

1 Introduction to scattering

Start with time-dependent Schrodinger equation in coordinate basis

‘hgw(r t) = —h—ZVQ +V(r) ) (r,t)

Tt Y = Tam e

The probability density to find the particle in the region around r is
p(r,t) = [Y(r,t)]* = " (r, t)i(r, ).

The equation of continuity says that the change in the particle density must arise from the flow of
currents, since particles are not created or destroyed. So

%p(r,t)+V-J(r,t) =0

is the equation of continuity (recall electromagnetism).

We use this equation to find J:
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Check: for a free particle
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But X = v = velocity = current takes probability to find particle at position r at time ¢ and mul-
tiplies by the particle’s velocity. This is what a current should be.
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Figure 1: Schematic of a scattering experiment in one-d. The incident wave enters from the left,
goes to the scattering center, denoted by V' and then is either transmitted or reflected.

2 Example: Scattering in one dimension

Simple example of 1D scattering—delta function potential at z = 0:
V(z)=—-X(z) A>0

We have an incident wave from the left (looks like ¢/** far away)

So for
<0 1/1(3?, t) = wincident (wa t) + wreﬂected (xa t)
x>0 Y(2,t) = Yiransmitted (T, 1) assume stationary so no ¢t dependence
A(et*® re=Ty 1 <0
Yl t) = { Atetk® x>0
r = Reflection amplitude t = Transmission amplitude

Now, we use the fact that ¢(z) is continuous across z = 0. This implies that A(1 + r) = At or
1+r=t.
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Now, the potential vanishes everywhere exceptatz = 0. But, 3 - Joso- dxs =
=0t _p2 d2 2 J2
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de|,_o+ dx|,_,- h? Zﬂ (z=0") ¥ (@ ), h? P(z=0)
0 since 9 is continuous
From this result, we can read off what the amplitudes are, so
2mA
Aikt — Aik(1 — 1) = —%At withr = ¢ — 1.
Hence, ,
2m\ 2ik +illh
ik(t—1+t—1)=—""2¢ and t=—" — m\_
I 2ik + =5 1+ an;\“
Simplifying, we have
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Note that these results satisfy || + [¢|> = 1

MQ = R = reflection coefficient

[t|> = T = transmission coefficient

R +T = 1is a consequence of conservation of probability, hence it always holds.

3 Formal theory for one-dimensional scattering

Now we treat a more formal theory of one -dimensional scattering.
We start from time dependent Schrodinger equation

L0 . I
Zh@hﬁ(t» = (HO + V) lw(t)) and Hp= o = kinetic energy.

m

We define the Green’s function to satisfy

<ih§t — f]o> Go (t,t') =6 (t—t') whichis called the equation of motion

Since the delta function acts like a unit matrix, one can think of Green’s function as the inverse
of the left most operator in the above equation (M ~'M =1).

Since Gy has a delta function in its equation of motion, it must be discontinuous at ¢ = ¢'.

Immediately, we break up the Green'’s function into its two different pieces
Go (t,t') = Gox (t,') + Go_ (¢, 1)

Goyt (t,V) = —%9 (t—t) e~ Ho(t=t)/n retarded

Go_ (t,¢) %9 (t' —t) e—iHo(t=t)/h advanced

This solves the equation of motion, where

OO0 g Loy = s

o(t) = 1 t>0 dt

as can be seen by noting £6(t) = 0 everywhere exceptatt = 0 where we have that fl;:ooj Lo(t)dt =
0 (t=0+) — 6(t=0—) = 1 — 0 = 1. So £6(t) = 0 everywhere and fooj dt$6(t) = 1 = delta function.

Using G we find
—+00 R R
k() = [ (t)) + / dt'Co (6.6) V () |(0))

—0o0

Where [1y()) is the free quantum state, which satisfies

mjt‘ 1/10(t)> = Ho |1ho(t)) .
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Proof: p d
(ings — o) o) = (i — o) Wole) + - F(0lu0)
— —

from full Schro. eq'n
from R.H.S is zero

Now multiply by the inverse-operator from the left

d N\t
<z’hdt — H0> on the left

d o\ -
6(0) = ool + [ at (inf — i) V) [ (1))
t,t’ matrix element ~=——~—"
vector
where the ¢, ¢’ matrix element of the inverse operator is the Green’s function. Note that matrix mul-
tiplication of a continuous operator requires an integration over one index.

But G(t,t') is the inverse operator from the equation of motion, so

(t) = [vo(e) + [ atCo () V (£) ] (¢))

Now substitute in Gy = @0+ only because we are interested in retarded solutions which build
up in time from the history of what happened for all earlier times. If you like, this is a postulate
where we are introducing an "arrow of time".

So we get

h
ast — —oo  |1(t)) — |[¢o(t)) which is what we want if V' is bounded.

() = [o(e) = e o [ aper oty () o (¢)

Hence one can also view this choice as a way to satisfy the boundary condition.

Now, unlike bound state problems, when E > V, we expect there to be a continuum of possible
states. Let E be the energy of the initial state such that

o (1)) = e E/ M ) ast — —oo
[W(t)) = e M) as t — —oo

Since we expect energy to be conserved if V' is independent of time, we expect the energy to stay
at E for all time. Hence we write

i (t)) = e "EH ) for all t.

Then we get
; . t
) = o) — e (Fo=E)e/n / ! =B 07y

It is mathematically convenient to think of V' being turned on over some time interval in the
infinite past, so we let V — Vedt/h d — 0. This may sound like an odd thing to do, but it helps
control some infinities one gets, if we do not do it.
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Substituting in, we can now integrate

1) = o) — %e_i(ﬁO‘E)t/h /t e (Ho=E)Y [hedt! /7y
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The €%/ makes the contribution vanish as ' — —oo and we take the limit § — 0% for the /"

term so it approaches 1 and we obtain

—i(Ho—E)t/h ei(lflofE)t .

(&
) = o) ~ V)
7 N
) =loo) + V1)

This is called the Lippman-Schwinger equation.




