Phys 506 lecture 21: Introduction to
Scattering II

1 Lippman-Schwinger Equation Continued

Last time, we derived the Lippman-Schwinger equation:

1

[¥) = [tbo) + mvhm

Let’s examine it in coordinate space by multiplying by (x| on the left and in-
troducing the complete set of states | |2')(z’| = I between the fraction and the

V.

P(x) = o) + /dx’ <:l:|E - ! |2V (2" ) (2").

Hy + 10
Introduce the complete set of states [ [p)(p| dp = I on the left to get:

1 , / 1 ,
x| —————|z)y = [ dp {z|p)(p| ———|p) (p|z).
g ™) = [ e el 1)

But (z|p) = % and Hylp) = %\p}, where % is a number. Thus:
1 , eip:z:/h 1 efip:r'/h
(#] ————[a") = [ dp R
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You can integrate this using residues. If you don’t know how to do this, don't
worry. The answer is:
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Let: k = 1/ 22E and choose vo(z) = e**, corresponding to an incident wave
moving to the right. Then:

ikx ik ¢ —ik(z—a') ! ! / ik > ik(z—z") / ’ ’
P(x) =™ — 5% e V(z")(z") da’ — 55 € V(z")(z") da
ik ik ¢ —ik(z—z") / / / ik —ikx > ikx’ ’ l /
=e 1- oY) e V(22" da' | — BYok eV (z(2") da’.
If we consider the limit when x — +oc:
po1- ik h eV (2 )y (a') da’
2F | .

and in the limit when x — —oc:
ik [

v ikx’ / / /
5F 7006 V(z" (') da'.

T =

Since ¢ (z) represents scattering to the right, we write |¢)) = |¢_,) and so:

Po(z) = ™ = (zftho) and e ™ = (2|t )

Thus, we can write:

" ) ik .
ro, = _227E.<w0<—|v|w*>> and t,=1- E@/’O%WWH»

2 Formal Solution and the Born Series

Let: 1
o)+ —— 7
) = 40) + s V)
and define )
— =G (E
E — Hy +i6 o+(E)
SO:

[9) = [1 - G0+(E)V} - [0)-

You may want to compare this with how we had organized pertrubation theory
for bound states previously. The reflection r_, and transmission ¢_, coefficients
are given by:

1
Vo)

ro =~ WolV [1 - Gor(B)V]
-1
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by =1— 35 (wo|V [1 = Goy (E)V]
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Expand in a geometric series:

) = 3 (Gos (BN Jio),
n=0
giving us:
T = =55 2un= 0 wm—‘V( V) |¢O—>>

t,=1- % > (o |V (G0+ ) [Y0)-

This is a formal series, similar to perturbation theory for bound states, that we
can expand to obtain subsequently more accurate approximations to the scatter-
ing problem solutions. The case when n = 1 is called the Born Approximation:

[9B5™) = [00-) + Gor (B)V [¢ho)
wafm(x) = ethz ffooo dz’ éo+($ _ m/)v(x/)eikx’

TB:;m = _%@pOe‘V‘wOH) = _% fooo dx V($>e2ikx
M = 1= J (oo Vivo-) = 1= g [ de etV (@)eits v o35 52V

Since we assume V is small, 729™ ~ 0 and 8™ ~ 1. Hence, the Born approxi-
mation works well when most of the wave is transmitted.

3 3D Scattering
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Figure 1: In spherical potential scattering, we have a plane wave come in, scatter
of a center and come out in spherical waves, similar to what happens when a
pebble is dropped into a pond.

Recall expansion of plane wave in spherical harmonics with £ = % ® and thus
Jo — V3mE.
s
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where jy(kr) = /g5 Je 1 (kr) is a spherical Bessel function and P(cos?) a
Legendre polynomial. Recall as well that as » — co, we have:

) 1. 2
Je(kr) — % Sin (kr — 2) .

Thus for r — oc:

12

fe(r) = Cysin (kzr - 2) =C (ei(kr_%r) - e_i(kr_%ﬂ)) ;

i(kr— i(kr—

Lry . . — L . :
where the term e %) is an outgoing wave and e 2) an incoming wave.

For an interacting case, where V (r) — 0 faster than the centrifugal potential
R20(6+1)

2mr2

we expectasr — oo
fo(r) = Ag(k) (e + ro(k)e™)

where A (k) is a constant, e ~**" an incident wave, and r,(k)e’*" a reflected wave.
This is because nothing can transmit through r = 0 (recall analogy to a 1D
infinite wall at » = 0). But in 1D we have R + T' = 1 which implies if T' = 0,
then R = 1. Thus r = ¢'® = phase and we write:

’I"[(k) — _ei(26g(k)7£7r)
with d,(k) being the ¢-th partial wave phase shift. Substituting in to find:
Fo(r) = Ad(k) (efikr _ ez‘(252(k)4n+kr)>

= Ay(k)e M =52 sin (kr + 64(k) — g;)

= By(k)sin <kr +60(k) — é;) .

For the free case, V = 0 and d,(k) = 0 for all £ and k.

Example 3.1. Consider a spherical well as pictured below.
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Figure 2: A spherical well with an infinite potential for the unphysical region
with r < 0, anegative potential -1}, for 0 < r < a and then 0 potential for r > a.
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Define:

{k1 = %«/2m(E +Vy) forr <a,
1
I3

ko = 2mE forr > a,

with E > 0. Then we have:

Ry(r) — { Bk, <,
‘ Be(E)jo(kar) + Co(Eyne(kar), 1> a,

where there is no restriction on the wave functions for r > a since r = 0 is not
within this region. Now, continuity of ¢ at r = a tells us:

Ag(E)je(kra) = Be(E)je(k2a) + Co(E)ne(k2a).
And continuity of ‘fl—f =" atr = a tells us:
k1 Ag(E)jy(kia) = kaBe(E)jy(kaa) + k2Co(E)njy(kaa).

We now want to solve for the coefficients By(E)/A¢(E) and C¢(E)/Ae(E). We

find: BAE) _ kane(kaa)ig(kra) — kjelkay(kza)
Ae(E)  kone(koa)jy(koa) — koje(kaa)n)(kea)’
and:
Ci(E)  kajy(kaa)je(kia) — kijy(kia)je(kea)
A(BE)  kame(koa)j)(kaa) — koje(kaa)n)(kea)
Note that:

¢(p) — —% cos (p - Eg) )

Yes, it is a mess. One would want to ultimately extract the scattering phase
shifts from this, but we are not going to show that here.




