
Phys 506 lecture 21: Introduction to
Scattering II

1 Lippman-Schwinger Equation Continued
Last time, we derived the Lippman-Schwinger equation:

|ψ⟩ = |ψ0⟩+
1

E − Ĥ0 + iδ
V̂ |ψ⟩.

Let’s examine it in coordinate space by multiplying by ⟨x| on the left and in-
troducing the complete set of states

∫
|x′⟩⟨x′| = I between the fraction and the

V̂ :
ψ(x) = ψ0(x) +

∫
dx′ ⟨x| 1

E − Ĥ0 + iδ
|x′⟩V (x′)ψ(x′).

Introduce the complete set of states
∫
|p⟩⟨p| dp = I on the left to get:

⟨x| 1

E − Ĥ0 + iδ
|x′⟩ =

∫
dp ⟨x|p⟩⟨p| 1

E − Ĥ0 + iδ
|p⟩⟨p|x′⟩.

But ⟨x|p⟩ = eipx/ℏ
√
2πℏ and Ĥ0|p⟩ = p2

2m |p⟩, where p2

2m is a number. Thus:

⟨x| 1

E − Ĥ0 + iδ
|x′⟩ =

∫
dp

eipx/ℏ√
2πℏ

1

E − p2

2m + iδ

e−ipx
′/ℏ

√
2πℏ

=

∫
dp

eip(x−x
′)/ℏ

2πℏ
1(√

E + iδ − p2

2m

)(√
E + iδ + p2

2m

)
You can integrate this using residues. If you don’t know how to do this, don’t
worry. The answer is:

⟨x| 1

E − Ĥ0 + iδ
|x′⟩ = −i

√
2m

ℏ2
1

2
√
E

[
Θ(x− x′)e

i
√

2mE
ℏ2 (x−x′)

+Θ(x′ − x)e
−i

√
2mE
ℏ2 (x−x′)

]
= −i

√
2mE

ℏ
1

2E

[
Θ(x− x′)ei

√
2mE(x−x′)/ℏ +Θ(x′ − x)e−i

√
2mE(x−x′)/ℏ

]
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Let: k =
√

2mE
ℏ2 and choose ψ0(x) = eikx, corresponding to an incident wave

moving to the right. Then:

ψ(x) = eikx − ik

2E

∫ x

−∞
e−ik(x−x

′)V (x′)ψ(x′) dx′ − ik

2E

∫ ∞
x

eik(x−x
′)V (x′)ψ(x′) dx′

= eikx
(
1− ik

2E

∫ x

−∞
e−ik(x−x

′)V (x′)ψ(x′) dx′
)
− ik

2E
e−ikx

∫ ∞
x

eikx
′
V (x′)ψ(x′) dx′.

If we consider the limit when x→ +∞:

t = 1− ik

2E

∫ ∞
−∞

e−ikx
′
V (x′)ψ(x′) dx′

and in the limit when x→ −∞:

r = − ik

2E

∫ ∞
−∞

eikx
′
V (x′)ψ(x′) dx′.

Since ψ(x) represents scattering to the right, we write |ψ⟩ = |ψ→⟩ and so:

ψ0(x) = eikx = ⟨x|ψ0→⟩ and e−ikx = ⟨x|ψ0←⟩

Thus, we can write:

r→ = − ik

2E
⟨ψ0←|V̂ |ψ→⟩ and t→ = 1− ik

2E
⟨ψ0→|V̂ |ψ→⟩.

2 Formal Solution and the Born Series
Let:

|ψ⟩ = |ψ0⟩+
1

E − Ĥ0 + iδ
V̂ |ψ⟩

and define
1

E − Ĥ0 + iδ
= Ĝ0+(E)

so:
|ψ⟩ =

[
1− Ĝ0+(E)V̂

]−1
|ψ0⟩.

Youmaywant to compare this with howwe had organized pertrubation theory
for bound states previously. The reflection r→ and transmission t→ coefficients
are given by: r→ = − ik

2E ⟨ψ0|V̂
[
1− Ĝ0+(E)V̂

]−1
|ψ0⟩

t→ = 1− ik
2E ⟨ψ0|V̂

[
1− Ĝ0+(E)V̂

]−1
|ψ0⟩.
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Expand in a geometric series:

|ψ→⟩ =
∞∑
n=0

(
Ĝ0+(E)V̂

)n
|ψ0→⟩,

giving us: r→ = − ik
2E

∑∞
n=0⟨ψ0←|V̂

(
Ĝ0+(E)V̂

)n
|ψ0→⟩

t→ = 1− ik
2E

∑∞
n=0⟨ψ0→|V̂

(
Ĝ0+(E)V̂

)n
|ψ0→⟩.

This is a formal series, similar to perturbation theory for bound states, that we
can expand to obtain subsequentlymore accurate approximations to the scatter-
ing problem solutions. The case when n = 1 is called the Born Approximation:
|ψBorn
→ ⟩ = |ψ0→⟩+ Ĝ0+(E)V̂ |ψ0→⟩

ψBorn
→ (x) = eikx +

∫∞
−∞ dx′ Ĝ0+(x− x′)V (x′)eikx

′

rBorn→ = − ik
2E ⟨ψ0←|V̂ |ψ0→⟩ = − ik

2E

∫∞
−∞ dxV (x)e2ikx

tBorn→ = 1− ik
2E ⟨ψ0→|V̂ |ψ0→⟩ = 1− ik

2E

∫∞
−∞ dx eikxV (x)eikx ≈ e

ik
2E

∫ ∞
−∞ dx V (x)

Since we assume V̂ is small, rBorn→ ∼ 0 and tBorn→ ∼ 1. Hence, the Born approxi-
mation works well when most of the wave is transmitted.

3 3D Scattering

Figure 1: In spherical potential scattering, we have a planewave come in, scatter
of a center and come out in spherical waves, similar to what happens when a
pebble is dropped into a pond.

Recall expansion of plane wave in spherical harmonics with E = ℏ2k2

2m and thus
k =

√
2mE
ℏ :

eikr cos θ =

∞∑
ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ),
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where jℓ(kr) =
√

π
2krJℓ+ 1

2
(kr) is a spherical Bessel function and Pℓ(cos θ) a

Legendre polynomial. Recall as well that as r → ∞, we have:

jℓ(kr) →
1

kr
sin

(
kr − ℓπ

2

)
.

Thus for r → ∞:

fℓ(r) → Cℓ sin

(
kr − ℓπ

2

)
= Cℓ

(
ei(kr−

ℓπ
2 ) − e−i(kr−

ℓπ
2 )

)
,

where the term ei(kr−
ℓπ
2 ) is an outgoingwave and e−i(kr− ℓπ

2 ) an incomingwave.
For an interacting case, where V (r) → 0 faster than the centrifugal potential

ℏ2ℓ(ℓ+1)
2mr2 , we expect as r → ∞

fℓ(r) → Aℓ(k)
(
e−ikr + rℓ(k)e

ikr
)

whereAℓ(k) is a constant, e−ikr an incidentwave, and rℓ(k)eikr a reflectedwave.
This is because nothing can transmit through r = 0 (recall analogy to a 1D
infinite wall at r = 0). But in 1D we have R + T = 1 which implies if T = 0,
then R = 1. Thus r = eiϕ = phase and we write:

rℓ(k) = −ei(2δℓ(k)−ℓπ)

with δℓ(k) being the ℓ-th partial wave phase shift. Substituting in to find:

fℓ(r) → Aℓ(k)
(
e−ikr − ei(2δℓ(k)−ℓπ+kr)

)
= Aℓ(k)e

i(δℓ(k)− ℓπ
2 )2i sin

(
kr + δℓ(k)−

ℓπ

2

)
= Bℓ(k) sin

(
kr + δℓ(k)−

ℓπ

2

)
.

For the free case, V = 0 and δℓ(k) = 0 for all ℓ and k.

Example 3.1. Consider a spherical well as pictured below.

Figure 2: A spherical well with an infinite potential for the unphysical region
with r < 0, a negative potential−V0 for 0 < r < a and then 0 potential for r > a.
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Define: {
k1 = 1

ℏ
√

2m(E + V0) for r < a,

k2 = 1
ℏ
√
2mE for r > a,

with E > 0. Then we have:

Rℓ(r) =

{
Aℓ(E)jℓ(k1r), r < a,

Bℓ(E)jℓ(k2r) + Cℓ(E)ηℓ(k2r), r > a,

where there is no restriction on the wave functions for r > a since r = 0 is not
within this region. Now, continuity of ψ at r = a tells us:

Aℓ(E)jℓ(k1a) = Bℓ(E)jℓ(k2a) + Cℓ(E)ηℓ(k2a).

And continuity of dψdr = ψ′ at r = a tells us:

k1Aℓ(E)j′ℓ(k1a) = k2Bℓ(E)j′ℓ(k2a) + k2Cℓ(E)η′ℓ(k2a).

We now want to solve for the coefficients Bℓ(E)/Aℓ(E) and Cℓ(E)/Aℓ(E). We
find:

Bℓ(E)

Aℓ(E)
=
k2ηℓ(k2a)j

′
ℓ(k1a)− k1jℓ(k1a)η

′
ℓ(k2a)

k2ηℓ(k2a)j′ℓ(k2a)− k2jℓ(k2a)η′ℓ(k2a)
,

and:
Cℓ(E)

Aℓ(E)
=
k2j
′
ℓ(k2a)jℓ(k1a)− k1j

′
ℓ(k1a)jℓ(k2a)

k2ηℓ(k2a)j′ℓ(k2a)− k2jℓ(k2a)η′ℓ(k2a)
.

Note that:
ηℓ(p) → −1

p
cos

(
p− ℓ

π

2

)
.

Yes, it is a mess. One would want to ultimately extract the scattering phase
shifts from this, but we are not going to show that here.
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