
Phys 506 lecture 25: Time-dependent Schrödinger equation

1 Time-dependent problems

Recall the time-dependent Schrödinger equation:
iℏ ∂t |ψ(t)⟩ = Ĥ(t) |ψ(t)⟩

Question: Suppose we are in the state |ψ(t0)⟩ at time t0. What state are we in at some later time t?
Note that this question is complicated by the fact that the Hamiltonian now changes with respect
to time.

2 Time-independent Hamiltonians

As a start, we suppose Ĥ is independent of time. Introduce energy eigenstates {|n⟩} such that
Ĥ |n⟩ = En |n⟩ and ⟨m|n⟩ = δmn. Then, expand

|ψ(t0)⟩ =
∑
n

cn(t0) |n⟩

Inserting into the Schrödinger equation,∑
n

iℏ ∂tcn(t) |n⟩ =
∑
n

Encn(t) |n⟩

Multiply by ⟨m|,
iℏ ∂tcm(t) = Emcm(t)

which is solved by
cm(t) = cm(t0)e

−iEm(t−t0)/ℏ

Hence,
|ψ(t)⟩ =

∑
n

cn(t0)e
−iEn(t−t0)/ℏ |n⟩

An alternate way to do this is as follows.

|ψ(t)⟩ = e−iĤ(t−t0)/ℏ |ψ(t0)⟩

Since,
e−iĤ(t−t0)/ℏ |n⟩ = e−iEn(t−t0)/ℏ |n⟩

because |n⟩ is an eigenstate of Ĥ , we then find that

|ψ(t)⟩ =
∑
n

cn(t0)e
−iEn(t−t0)/ℏ |n⟩

as before.
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3 Time-dependent Hamiltonians

Now assume that Ĥ(t) is time-dependent (∂tĤ ̸= 0).

Method A: Introduce any complete orthonormal basis {|n⟩}.

|ψ(t)⟩ =
∑
n

cn(t) |n⟩

Then,
iℏ ∂t |ψ(t)⟩ =

∑
n

iℏ ∂tcn(t) |n⟩ = Ĥ(t) |ψ(t)⟩ =
∑
n

cn(t)Ĥ(t) |n⟩

Multiplying by ⟨m|,
iℏ ∂tcm(t) =

∑
n

cn(t)
〈
m
∣∣∣Ĥ(t)

∣∣∣n〉
so

iℏ ∂tcm(t) =
∑
n

Hmn(t)cn(t)

This is a matrix differential equation that is hard to solve except for small-finite sized problems.
This is because there is nothing we know about the matrix Hmn(t) and it can be a complicated
object to work with, especially if it is infinite dimensional.

Method B: Introduce instantaneous eigenstates.
Ĥ(t) |n(t)⟩ = En(t) |n(t)⟩

So now, everything depends on time. But, we still have orthonormality and completeness:

⟨m(t)|n(t)⟩ = δmn and
∑
m

|m(t)⟩ ⟨m(t)| = I.

Then, let
|ψ(t)⟩ =

∑
n

cn(t) |n(t)⟩ .

Inserting into the Schrödinger equation,∑
n

iℏ ∂tcn(t) |n(t)⟩+
∑
n

iℏcn(t)∂t |n(t)⟩ =
∑
n

cn(t)En(t) |n(t)⟩

Multiply by ⟨m|,
iℏ ∂tcm(t) + iℏ

∑
n

cn(t) ⟨m(t)|∂t|n(t)⟩ = cm(t)Em(t).

In general, it is hard to calculate the middle term. But note,
⟨m(t)|n(t)⟩ = δmn =⇒ ∂t ⟨m(t)|n(t)⟩+ ⟨m(t)|∂t|n(t)⟩ = 0

and
Ĥ(t) |n(t)⟩ = En(t) |n(t)⟩ =⇒ ∂tĤ(t) |n(t)⟩+ Ĥ(t)∂t |n(t)⟩ = ∂tEn(t) |n(t)⟩+ En(t)∂t |n(t)⟩

Multiply by ⟨m|,〈
m(t)

∣∣∣∂tĤ(t)
∣∣∣n(t)〉+ Em(t) ⟨m(t)|∂t|n(t)⟩ = ∂tEn(t)δmn + En(t) ⟨m(t)|∂t|n(t)⟩

Then, break out into cases:
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• Ifm = n, then we find
〈
n(t)

∣∣∣∂tĤ(t)
∣∣∣n(t)〉 = ∂tEn(t).

• Ifm ̸= n, then we find ⟨m(t)|∂tĤ(t)|n(t)⟩
En(t)−Em(t) = ⟨m(t)|∂t|n(t)⟩

So,

iℏ ∂tcm(t) + iℏcm(t) ⟨m(t)|∂t|m(t)⟩+ iℏ
∑
m ̸=n

cn(t)

〈
m(t)

∣∣∣∂tĤ(t)
∣∣∣n(t)〉

En(t)− Em(t)
= cm(t)Em(t)

The derivativematrix element is still hard to deal with, but at least now there is only one such term.
This approach can be used to develop what is called adiabatic perturbation theory, where we

assume the changes of the Hamiltonian in time are slow. Griffiths textbook has an excellent treat-
ment of this problem.

4 Time evolution operator

Define Û(t, t0) by
|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ .

U takes us from time t0 to t. If Ĥ(t) is time-independent then

Û(t, t0) = exp

(
− i

ℏ
Ĥ(t− t0)

)
as we saw earlier. Here are some general properties of Û .

1.) Û(t0, t0) = I

2.) Û(t, t′)Û(t′, t0) = Û(t, t0)

3.) Due to the Hermiticity of Ĥ , Ĥ† = Ĥ .
iℏ ∂t |ψ(t)⟩ = Ĥ(t) |ψ(t)⟩
⟨ψ(t)| (−iℏ∂t) = ⟨ψ(t)| Ĥ(t),

where the operator acts to the left. Therefore,
∂t ⟨ψ(t)|ψ(t)⟩ = ⟨ψ(t)|∂t|ψ(t)⟩+ ⟨ψ(t)|∂t|ψ(t)⟩

=
i

ℏ

〈
ψ(t)

∣∣∣Ĥ(t)
∣∣∣ψ(t)〉− i

ℏ

〈
ψ(t)

∣∣∣Ĥ(t)
∣∣∣ψ(t)〉

= 0.

Hence, normalized states remain normalized for all t. This tells us that

⟨ψ(t)|ψ(t)⟩ =
〈
ψ(t0)

∣∣∣Û †(t, t0)Û(t, t0)
∣∣∣ψ(t0)〉 = ⟨ψ(t0)|ψ(t0)⟩ .

Hence Û †(t, t0)Û(t, t0) = I meaning Û is unitary.

4.) Plugging |ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ into the Schrödinger equation,
iℏ ∂tÛ(t, t0) |ψ(t0)⟩ = Ĥ(t)Û(t, t0) |ψ(t0)⟩

3



Quantum Mechanics II Lecture 25

Since this is true for all t0,
iℏ ∂tÛ(t, t0) = Ĥ(t)Û(t, t0)

which is called the equation of motion.

5 Time ordered products

Now, we wish to integrate the equation of motion to obtain an expression for Û(t, t0).

iℏ(Û(t, t0)− Û(t0, t0)) =

∫ t

t0

Ĥ(t′)U(t′, t0) dt
′

=⇒ Û(t, t0) = I− i

ℏ

∫ t

t0

Ĥ(t′)Û(t′, t0) dt
′.

If we iterate,

Û(t, t0) = I− i

ℏ

∫ t

t0

Ĥ(t′) dt′ +

(
−i
ℏ

)2 ∫ t

t0

dt′
∫ t1

t0

dt2Ĥ(t1)Ĥ(t2) + · · ·

= I− i

ℏ

∫ t

t0

dt1T (Ĥ(t1)) +

(
−i
ℏ

)2 1

2!

∫ t

t0

dt1

∫ t

t0

T (Ĥ(t1)Ĥ(t2)) + · · ·

where the time-ordered product T is defined by

T (Â1(t1)) = Â1(t1)

T (Â1(t1)Â2(t2)) = Θ(t1 − t2)Â1(t1)Â2(t2) + Θ(t2 − t1)Â2(t2)Â1(t1).

The rule is to “put Later times to the Left”. The proof of this formula is simple. Each time-ordered
piece gives the same result as the original series. There are n! different orderings of n operators so
this cancels out the 1

n! . We write

Û(t, t0) = T exp(− i

ℏ

∫ t

t0

dt′Ĥ(t′)) =
∞∑
n=0

(
−i
ℏ

)n 1

n!

∫ t

t0

· · ·
∫ t

t0

dtnT (Ĥ(t1)Ĥ(t2) · · · Ĥ(tn))

This is a power series in Ĥ not in some time-dependent perturbation V̂ (t), hence it often is not
useful for applications. Note that property 4 says

iℏ ∂tT exp(− i

ℏ

∫ t

t0

dt′Ĥ(t′)) = Ĥ(t)T exp(− i

ℏ

∫ t

t0

dt′Ĥ(t′))

So time-ordered products generalize to operators the fundamental property of an exponential func-
tion - namely that the derivative of an exponential is the derivative of the argument times the ex-
ponential. This is nontrivial because the operators may not commute at different times.
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