Phys 506 lecture 26: Interaction representation

1 Review of the time-ordered product

Last time we developed an expansion for U (t, ty) in powers of H (t):
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U (t,to) = Texp [—; dt' H (t’)]

to
S i n 1 /t /t .
= —— — dty--- dt, T H(tl)'“H(tn)
S () s [ )
0 i\"™ ot t1 tn—1 N .
:Z(—h> [an [N [T e i) )
n=0 to to to

Note also that the equation of motion for U is
L0 - AN
zhaU (t,t0) = H(t)U(t,1p)

which follows from the last form for U. Now, note that ¢ only appears in the upper limit of the last
integral, which allows us to take the derivative with respect to ¢ as follows:
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But in many cases, the Hamiltonian separates into a time independent piece and a small time-
dependent piece as H = Hj + V/(t). In those cases, we want an expansion in V' not H.

2 Pictures for time evolution

We start by looking at different pictures for quantum mechanizes.

We are all familiar with the Schrodinger representation.

Hy(t)) = ihgth/}(t)) assume H independent of time here.
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Now consider the expectation value of an operator A with no time dependence, where the expec-
tation value can have time dependence from the dime dependence of the states:

A(t) = () Ale(2)).

Then, taking the derivative gives us

A0 = (5]) Aoy + WO 1ue)

= LWOIHAD) — ()| ABI(0)
=~ (WOI[A, H][p (1)
z’h%A(t) = (WOA, Hp(1)).

All time dependence comes from the wave functions in the Schrodinger representation when %—Ij =

0.
Heisenberg representation

Write |5 (t)) = U(t) |y)  with U(t) = e #7t Then define

A (t) = UT(H)AU(¢).
Then A
A(t) = (s ()] A s (1))
= (u| UT(OAU(t) [¢n)
= (| Ap(t) |vn),

and all time dependence is in the operators now. We find that
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= U'[A, HlU

= [/AIH(t),I:I} since [U JH } — ( for time-independent H.

Summarizing, we have that

od o ; A
ihAp (1) = [AH(t), H}
which is called the equation of motion. All time dependence is now in the operators, which evolve

like Poisson brackets in classical mechanics.
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3 Pictures for time-dependent Hamiltonians

If H depends on time, ﬁs(t), we proceed similarly
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The last term is U (¢, to) al%t(t) U (t,to) = ih%'

4 Interaction representation

The interaction representation is halfway between Schrodinger and Heisenberg. We have the same
break-up into a time-independent and a small time-dependent piece:

H(t) = H+V(t).
So we have A
Holn) = Ep|n).

Define

i

7 (t)) = enHolt=to) [y (4))

Ar(t) = 6%Ho(t_to)As(t)e_%I;IO(t—to)

Vi(t) = enfolt=t0)yy (1)e= 1 Holt—to),
Note that Hy;(t) = Hos(t) = Hy(t) since

[, eh000] =,
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So, we find that
0 AT i —
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Hence, if U; (t1to) |21 (to)) = |v1(t)), then we have
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This is called the Dyson expansion for the evolution operator.

Note that . R
[r(t)) = efFo=t0) [y (1)) = & FE=tITT, (¢, 10) [ (t0))
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but |11 (to)) = |[vs (t0)) = [¢m (to)) since U (o, to) = 1 in all pictures.
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This is the desired expansion of the evolution operator in a power series in V and it will be used
for time dependent perturbation theory in a few lectures.
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We can derive this result directly though. Recall ih%Te_ﬁ Joo A At)Te * Jo @A) g6
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But e~ #00=0) P (t) = Yy (t)e #0050
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So ih%Op(t, to) = H(t) O,(t, to) and O, (to, to) = I, which implies that O, (¢, to) = Us (t, to) , so we
have proved the result directly.




