
Phys 506 lecture 27: Cyclotron resonance

1 Precession of a spin
An example of an exact time-ordered product.

When a spin is placed in a constant magnetic field, it precesses as shown below.

Figure 1: Precession involves a rotating object, whose axis makes an angle to
the vertical, and over time, the axis revolves in a circle about the vertical, with
the tail fixed on the vertical, and the tip tracing out a circle in the horizontal
plane.

The magnetic moment of a spin, with angular momentum S is µ = γS, where
we are using the Gottfried normalisation for S and the factor γ = egℏ

2mc is called
the gyromagnetic ration with the Lande g factor g. If we study the Hamiltonian
in a magnetic field B0 along the ẑ direction, we get:

Ĥ0 = −µ ·B0 = −γB0Ŝz = −ℏΩŜz

where Ω = γB0

ℏ is called the Larmor frequency. If our states had total spin s
and z componentm, then:

Ĥ0|s,m⟩ = −ℏΩm|s,m⟩.

The time dependence is:

|s,m; t⟩ = e−
i
ℏ Ĥ0t|s,m⟩ = eiΩmt|s,m; t = 0⟩.

Hence, the states rotate with a frequency Ωm. This rotation is called precession
(harmonics of the Larmor frequency). In a magnetic resonance experiment, we
add an additional small perpendicular field that rotates around the z-axis.
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Figure 2: Precession involves a rotating object, whose axis makes an angle to
the vertical, and over time, the axis revolves in a circle about the vertical, with
the tail fixed on the vertical, and the tip tracing out a circle in the horizontal
plane. The added magnetic field is also in the horizontal plane.

2 Magnetic resonance
The second field is small, but its rotation frequency can be adjusted externally.
Interesting things happen when the second field rotates at the same rate as the
precession of the spin. Then, in the spin’s rest frame, it sees a static perpendic-
ular magnetic field, which the spin will precess about. If we wait long enough,
the spin will flip. Let’s examine this mathematically:

B(t) = B0ez +B1(ex cosωt− ey sinωt)

Ĥ(t) = −ℏµ ·B = −ℏΩŜz − γB1(Ŝx cosωt− Ŝy sinωt).

Now consider the operator that transforms us into the rotating frame of the
transverse magnetic field B,

D̂(ωt, ẑ) = e−iωtŜz

We find that
D̂†(ωt, ẑ)ŜzD̂(ωt, ẑ) = eiωtŜz Ŝze

−iωtŜz = Ŝz

and:
D̂†(ωt, ẑ)ŜxD̂(ωt, ẑ) = eiωtŜz Ŝxe

−iωtŜz = fx(t)

The time derivative can be found to be:

dfx
dt

= iωeiωtŜz [Ŝz, Ŝx]e
−iωtŜz .

Using the commutator [Ŝz, Ŝx] = iŜy (Gottfried normalization), we find:

dfx
dt

= −ωfy,

where fy = eiωtŜz Ŝye
−iωtŜz , which again has a time derivative:

dfy
dt

= iωeiωtŜz [Ŝz, Ŝy]e
−iωtŜz = ωfx.
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Thus, we get the system of differential equations:{
d2fx
dt2 = −ω2fx
d2fy
dt2 = −ω2fy

The solutions are: {
fx(t) = cosωt fx(0) +

1
ω sinωt fx(0)

fy(t) = cosωt fy(0) +
1
ω sinωt fy(0)

with initial conditions: 
fx(0) = Ŝx

fy(0) = Ŝy

ḟx(t) = −ωŜy

ḟy(t) = ωŜx

Therefore: {
D̂†(ωt, ẑ)ŜxD̂(ωt, ẑ) = cosωt Ŝx − sinωt Ŝy

D̂†(ωt, ẑ)ŜyD̂(ωt, ẑ) = cosωt Ŝy + sinωt Ŝx

Hence, we can write:

Ĥ(t) = D̂†(ωt, ẑ)
[
−ℏΩŜz − γB1Ŝx

]
D̂(ωt, ẑ).

The Hamiltonian is a unitary transformation of a time-independent Hamilto-
nian!

3 Going to the rotating frame
To work in the rotating frame, we write:

|ψ(t)⟩ = D̂(ωt, ẑ)|ψR(t)⟩

where theR indicates a rotating frame. Substituting into the Schrödinger equa-
tion and using the property D̂†D̂ = 1, we get:

Ĥ(t)|ψ(t)⟩ = D̂†(ωt, ẑ)
[
−ℏΩŜz − γB1Ŝx

]
|ψR(t)⟩ = iℏ

∂

∂t
|ψR(t)⟩.

Multiply through by D̂(ωt, ẑ):

[−ℏΩŜz−γB1Ŝx]|ψR(t)⟩ = iℏD̂(ωt, ẑ)
∂

∂t
D̂†(ωt, ẑ)|ψR(t)⟩ = −ℏωŜz|ψR(t)⟩+iℏ

∂

∂t
|ψR(t)⟩.

Rearranging we get:

[(ℏω − ℏΩ)Ŝz − γB1Ŝx]|ψR(t)⟩ = iℏ
∂

∂t
|ψR(t)⟩,
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where the Hamiltonian is now time independent and hence easier to solve.
Namely, the time-evolved state is given by:

|ψR(t)⟩ = e−
i
ℏ Ĥt|ψR(0)⟩ = e−

i
ℏ t[(ℏω−ℏΩ)Ŝz−γB1Ŝx]|ψR(0)⟩

So |ψ(t)⟩ = D̂†(ωt, ẑ)|ψR(t)⟩ or

|ψ(t)⟩ = e−iωtŜze−it[(ω−Ω)Ŝz− γB1
ℏ Ŝx]|ψR(0)⟩

Suppose the system is initially in a pure state |j,m⟩ at t = 0. What is the prob-
ability of being in another state at time t?

P (t)j′m′←jm =
∣∣∣⟨j′,m′|e−iωtŜze−it[(ω−Ω)Ŝz− γB1

ℏ Ŝx]|j,m⟩
∣∣∣2 .

Since Ŝ2 commutes with ei(αŜz+βŜx) and |eiωtm′ |2 = 1, this simplifies to:

P (t)j′m′←jm = δjj′
∣∣∣⟨m′|e−it[(ω−Ω)Ŝz− γB1

ℏ Ŝx]|m⟩
∣∣∣2 .

Calculating this result explicitly is complicated.

4 Spin one-half example
For a spin- 12 system, the spin operators are:

Ŝz =
1

2
σz =

1

2

(
1 0
0 −1

)
, Ŝx =

1

2
σx =

1

2

(
0 1
1 0

)
.

Derived earlier in class, we found:

eiu·σ = cos |u|+ i sin |u|u · σ
|u|

Hence, we find that:
e−it[(ω−Ω)Ŝz− γB1

ℏ Ŝx] = e−iu·σ

where

|u| = t

2

√
(ω − Ω)2 +

(
γB1

ℏ

)2

= ∆
t

2

and where we defined ∆ =

√
(ω − Ω)2 +

(
γB1

ℏ

)2

. Thus, using the identity
derived previsouly in class that we mentioned above, the exponential becomes:

e−it[(ω−Ω)Ŝz− γB1
ℏ Ŝx] = cos

(
∆t

2

)
I− i sin

(
∆t

2

)[
(ω − Ω)

∆
σz −

γB1

ℏ∆
σx

]
.
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The probability amplitudes for the states are:∣∣∣∣〈1

2
,−1

2

∣∣∣∣cos(∆t

2

)
I− i sin

(
∆t

2

)[
(ω − Ω)

∆
σz −

γB1

ℏ∆
σx

]∣∣∣∣12 , 12
〉∣∣∣∣2

= sin2
(
∆t

2

)
γ2B2

1

ℏ2∆2
= P− 1

2←
1
2
(t)

Similarly, the probability for remaining in the initial state is:

P 1
2→

1
2
(t) =

∣∣∣∣cos(∆t

2

)
− i sin

(
∆t

2

)
(ω − Ω)

∆

∣∣∣∣2 = cos2
(
∆t

2

)
+ sin2

(
∆t

2

)
(ω − Ω)2

∆2

= 1− sin2
(
∆t

2

)
γ2B2

1

ℏ2∆2
.

We can see that our results are consistent as:

P 1
2→

1
2
(t) + P− 1

2←
1
2
(t) = 1,

should hold by probability conservation.
Note that higher spin cases can be worked out with the exponential disen-

tangling identity.
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