
Phys 506 lecture 29: Time dependent perturbation theory

1 Interaction picture review

Our general interaction picture formalism showed

|ψs(t)⟩ = e−
i
ℏ Ĥ0(t−t0)ÛI (t, t0) |ψs (t0)⟩

ÛI (t, t0) = Te
− i

ℏ
∫ t
t0

V̂I(t
′)dt′

= 1− i

ℏ

∫ t

t0

V̂I
(
t′
)
dt′ +

(
−i
ℏ

)2 ∫ t

t0

dt1

∫ t

t0

dt2 V̂I(t1)V̂I(t2) + · · ·

Then the probability to have a transition from state|i⟩ at t0 to state ⟨f | at time t is

Pf←i(t) =
∣∣∣⟨f |e−i

ℏ Ĥ0(t−t0)ÛI(t, t0)|i⟩
∣∣∣2

If ⟨f | and |i⟩ are eigenstates of Ĥ0 then ⟨f |e−
i
h
Ĥ0(t−t0) = e−

i
ℏEf (t−t0)⟨f | is a phase whose mod-

ulus squared = 1, so

Pn←m(t) =
∣∣∣0⟨n|ÛI (t, t0) |m⟩0

∣∣∣2
=

∣∣∣∣0⟨n|(1− i

ℏ

∫ t

0
dt′V̂I(t

′) + · · ·
)
|m⟩0

∣∣∣∣2
=

∣∣∣∣δnm − i

ℏ0⟨n|
∫ t

t0

e
i
ℏ Ĥ0(t− t0) V̂ (t1) e

− i
ℏ Ĥ(t1−t0)|m⟩0 + · · ·

∣∣∣∣2 .
2 Perturbation theory

Define ωnm =
(
E0

n − E0
m

)
/ℏ, then the lowest order approximation, called the first Born approxi-

mation is

Pn←m(t) ≈
∣∣∣∣δnm − i

ℏ

∫ t

t0

eiwnm(t1−t0)
0⟨n|V̂ (t1)|m⟩0dt1

∣∣∣∣2
=

∣∣∣∣δnm − i

ℏ

∫ t

t0

dt1e
iwnm(t1−t0)Vnm (t1)

∣∣∣∣2 .
So, if n ̸= m, we have that

Pn←m
n̸=m

(t) =
1

ℏ2

∣∣∣∣∫ t

t0

dt1e
iwnm(t1−t0)Vnm (t1)

∣∣∣∣2
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3 Harmonic perturbation

When the potential takes the form

V̂ (t) = eiΩtâ† + e−iΩtâ, Ω > 0 = driving frequency and â is any operator

we have what is called a harmonic perturbation. Assume anm = 0⟨n|â|m⟩0 ̸= 0 and t0 = 0, then

Pn←m
n̸=m

(t) =
1

ℏ2

∣∣∣∣∫ t

0
dt1e

iwnmt1
(
anme

−iΩt1 + a∗nme
iΩt1

)∣∣∣∣2
=

1

ℏ2

∣∣∣∣ anm
i (wnm − Ω)

(
ei(wnm−Ω)t − 1

)
+

a∗nm
i (wnm +Ω)

(
e i(wnm+Ω)t − 1

)∣∣∣2
=

1

ℏ2

{
|anm|2

(wnm − Ω)2
2 (1− cos (wnm − Ω) t)

+
|anm|2

(wnm +Ω)2
2 (1− cos (wnm − Ω) t) + cross terms

}

=
4

ℏ2
|anm|2

[
sin2 (wnm − Ω) t

2

(wnm − Ω)2
+

sin2(wnm +Ω
)

t
2

(wnm +Ω)2
+ cosΩ

]
.

The first term is large if ωmn > 0 and ωnm ≈ Ω, while the second term is large if ωnm < 0 and
ωnm ≈ −Ω. Both conditions are called resonance.

wnm → Ω En = Em + ℏΩ stimulated absorption

Figure 1: Figure displaying how a photon of energy ωnm can be absorbed and excite from the lower
statem to the upper state n. This is called stimulated absorption.

−wnm → Ω En = Em − ℏΩ stimulated emission

Accuracy: expect first Born to be accurate for Pn←m ≪ 1. The worst case is on resonance where
Pn←m ∼ ct2, which is larger than 1 for long enough time.

In general probabilities oscillate with time (recall cyclotron resonance problem)

The problem with first order perturbation theory is it neglects depletion and return

depletion: expect probability of Pn←m to decrease when most m’s are gone
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Figure 2: Figure displaying how a photon of energy −ωnm can stimulate an emission from the
upper state n to the lower statem. This is called stimulated emission.

return: after n’s populated, they re-emit back to m.

Both processes are higher order effects.

Example: photo-ionization of Hydrogen - when a photon knocks an electron out of H , little
chance it will return back. In this case, neglecting return is OK.

4 Example of perturbation theory for an exactly solvable problem

Compare to the solvable example of last lecture.

Recall we showed

|ψs(t)⟩ = eiωt(â
†â+ 1

2
) exp

[
− c

ℏ(Ω + ω)
(ei(ω+Ω)t − 1)â† +

c

ℏ(Ω + ω)
(ei(ω+Ω)t − 1)â

]
∗ ei

c2

ℏ2(Ω+ω)2
[(ω+Ω)t−sin(ω+Ω)t]|ψs(0)⟩

for Ĥ = ℏω(â+ â+
1

2
)︸ ︷︷ ︸

Ĥ0

+ ceiΩtâ† + ce−iΩtâ︸ ︷︷ ︸
V̂

c ∈ R.

Consider the following operator identity:

eτ(Â+B̂)e−τB̂e−τÂ = f(τ) with [Â, B̂] = number

eτ(Â+B)(Â+ B̂)e−τB̂e−τA − eτ(A+B)B̂e−τB̂e−τÂ − eτ(Â+B̂)e−τB̂Âe−τÂ

=
df(τ)

dτ

eτ(Â+B̂)
[
Â, e−τB̂

]
e−τÂ =

df(τ)

dτ

But [Â, e−τB̂] =
∞∑
n=0

(−τ)n

n!
[Â, B̂n] =

∞∑
n=0

(−τ)n

n!
[Â, B̂]B̂n−1nwhen [Â, B̂] = number

= −τ [Â, B̂]e−τB̂

so df(τ)
dτ

= τ [B̂, Â]f(τ) ⇒ f(τ) = e
τ2

2
[B̂,Â], let τ = 1

or eÂ+B̂ = e
1
2
[B̂,Â]eAeB
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apply to Â =
−c

ℏ(ω +Ω)

(
ei(ω+Ω)t − 1

)
a†

B̂ =
c

ℏ(ω +Ω)

(
e−i(ω+Ω)t − 1

)
â

[B̂, Â] =
−c2

ℏ2(ω +Ω)2
2(1− cos(ω +Ω)t).

Thus, if we start in the ground state, we find

Pm←0(t) =
∣∣∣0⟨m|eiωt(â†â+

1
2
)e
− c

ℏ(ω+Ω)(e
i(ω+Ω)t−1)a† e

c
ℏ(ω+Ω)(e

−i(ω+Ω)t−1)â|0⟩0

× e
− c2

ℏ̄2(ω+Ω)2
(1−cos(ω+Ω)t)

e
i c2

ℏ2(ω+Ω)2
((ω+Ω)t−sin(ω+Ω)t)

∣∣∣∣2
= e
− 2c2

ℏ2(ω+Ω)2
(1−cos(ω+Ω)t)

∣∣∣∣0⟨m|e−
c

ℏ(ω+Ω)

(
ei(ω+Ω)ta2t−1

)
â† |0⟩0

∣∣∣∣2 .
But, 0⟨m| = 0⟨0| (â)

m

√
m!

and e−
c

ℏ(ω+Ω(e
i(ω+Ω)t−1)â† =

∑∞
n=0

(
− c

ℏ(ωΩ)(e
i(ω+Ω)t − 1)

)n
1
n!(â

†)n. We need
n = m and ⟨0| (â)m

(
â†
)m |0⟩ = m!, so

Pm←0(t) = e
− 2c2

ℏ2(ω+Ω)2
(1−cos(ω+Ω)t)

[
c2

ℏ2(ω +Ω)2
2(1− cos(ω +Ω)t)

]m
1

m!

Pm←0(t) =
1

m!

(
2c2

ℏ2(ω +Ω)2

)m

(1− cos(ω +Ω)t)me
− 2c2

ℏ2(ω+r)2
(1−cos(ω+Ω)t)

This is the exact solution.

One can directly check that

∞∑
m=0

1

m!

(
2c2

ℏ2(ω +Ω)2

)m

(1− cos(ω +Ω)t)me
− 2c2

ℏ2(ω+Ω)2
(1−cos(ω+Ω)t)

= exp

[
2c2

ℏ2(ω +Ω)2
(1− cos(ω +Ω)t)− 2c2

ℏ2(ω + n)2
(1− cos(ω +Ω)t)

]
= 1 as it must.

Compare to the harmonic calculation

⟨m|câ†|0⟩ = 0 unlessm = 1

⟨m|â†|0⟩ = cδm1 and ω10 = ω

P1←0(t) ∼=
4c2

ℏ2
sin2(ω +Ω)t

1
2

(ω +Ω)2
,

which agrees with the above form form = 1 to lowest order in c2 when we note that

1− cos(ω +Ω)t = 2 sin2[(ω +Ω)t/2].
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