
Phys 506 lecture 3

In this lecture, we use the identities we just developed to determine the simple
harmonic oscillator wavefunctions and other properties. The approach given here is a
little different from what you will see in textbooks.

1 Factorizing the Hamiltonian
The SHO Hamiltonian is

Ĥ =
p̂2

2m
+

1

2
mω2

0x̂
2

Many textbooks postulate ladder operations as a "trick" solution, but if we think of
factorizing, like with polynomials, we would try

1√
2m

(p̂+ imω0x̂)︸ ︷︷ ︸
Â†

1√
2m

(p̂− imω0x̂)︸ ︷︷ ︸
Â

for factorizing the sum of squares. You might next ask why not factor in the opposite
order as ÂÂ†? We will answer the ordering question later.

Now, when we work out the product, because they are operators, we find an extra
term from the commutator, or

Â†Â =
1

2m

p̂2 − imω0 [p̂, x̂]︸︷︷︸
−iℏ

+m2ω2
0x̂

2


= Ĥ − 1

2
ℏω0.

So, we have

Ĥ = Â†Â+
1

2
ℏω0.

2 Finding energy eiegenstates

If we recall, for an eigenstate |ψ⟩, we have E = ⟨ψ|Ĥ|ψ⟩, with normalized |ψ⟩, then
we see for this case
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E = ⟨ψ|Ĥ|ψ⟩ = ⟨ψ|Â†Â|ψ⟩+ 1

2
ℏω0

⇒ E ≥ 1

2
ℏω0, since ⟨ψ|Â†Â|ψ⟩ = ∥Â|ψ⟩∥2 ⩾ 0

Hence, if we can find a state with Â|0⟩ = 0, then this would be the ground state
and we would have Egs =

1
2
ℏω0.

For now, we assume such a state exists. Later, we will see that it does.

We next work out the intertwining relation (moving Â† through Ĥ
)
. We start

by writing out the product with the raising operator on the right, and then use the
commutator to change the order of the pair of operators on the right. So, we have

ĤÂ† =

(
Â†Â+

1

2
ℏω0

)
Â† = Â†

Â†Â+
[
Â,

ˆ̂
A†
]

︸ ︷︷ ︸
ÂÂ†

+
1

2
ℏω0

 .

But, we have[
Â, Â†

]
=

1

2m
[p̂− imω0x̂, p̂+ imω0x̂] =

1

2m
2imω0[p̂, x̂] = ℏω0,

so, we have
ĤÂ† = Â†

(
Ĥ + ℏw0

)
.

In words, moving the harmonic oscillator Hamiltonian past a raising operator originally
on the right, shifts the Hamiltonian by ℏω0.

We use this to find all of the hiher-energy eigenstates. Our claim is that
(
Â†
)n

|0⟩
is an energy eigenstate. Our proof just uses the intertwining relation.
Proof: Ĥ(Â†)n|0⟩ = ĤÂ†(Â†)n−1 = Â† (Ĥ + ℏω0)(Â

†)n−1︸ ︷︷ ︸
repeat n-1 more times

|0⟩

=
(
Â†
)n (

Ĥ + nℏω0

)
|0⟩ =

(
Â†
)n(1

2
ℏω0 + nℏω0

)
|0⟩

=

(
n+

1

2

)
ℏω0

(
Â†
)n

|0⟩ = En

(
Â†
)n

|0⟩.

So
En =

(
n+

1

2

)
ℏw0.

We also use this to normalize the energy eigenstate. To do this, we identify an
ÂÂ† term in the center of the string of operators in the norm. We replace it by the
Hamiltonian, and then use intertwining to evaluate it against the state on the right.
We have

⟨0|(Â)n(Â†)n|0⟩ = ⟨0|(Â)n−1ÂÂ†(Â†)n−1|0⟩

= ⟨0|(Â)n−1

(
Ĥ +

1

2
ℏω0

)
(Â†)n−1|0⟩

= ⟨0|(Â)n−1(Â†)n−1

(
Ĥ +

(
n− 1

2

)
ℏω0

)
|0⟩

= nℏω0⟨0|(Â)n−1
(
Â†
)n−1

|0⟩
2



Repeat n− 1 more times:

= n! (ℏω0)
n ⟨0 | 0⟩︸ ︷︷ ︸

assume normalized

.

So

|n⟩ =

(
Â†
)n

√
n! (ℏω0)

n/2
|0) has En = ℏω0

(
n+

1

2

)
.

This may not look like what you are used to. It is conventional to redefine the
operators via

â† =
−i√
ℏω0

Â† â =
i√
ℏω0

Â

â† =

√
mω0

2ℏ

(
x̂− i

1

mω0

p̂

)
â =

√
mω0

2ℏ

(
x̂+ i

1

mω0

p̂

)
.

Then,
[
â, â†

]
= 1, Ĥ = ℏω0

(
â†â+ 1

2

)
, â|0⟩ = 0, |n⟩ = (â†)n√

n!
|0⟩︸ ︷︷ ︸

we removed an inconsequential phase of (−i)n

3 Wavefunctions
Next up, we calculate the wave function. Recall, the eigenstate of position satisfies

x̂|x⟩ = x|x⟩,

which is an operator acting on a state giving us a number times that state.
Claim:

|x⟩ = e−
i
ℏ

number︷︸︸︷
x

operator︷︸︸︷
p̂ |x=0⟩.

Proof:
x̂|x⟩ = 1︸︷︷︸

insert e−i
xp̂
ℏ ei

xp̂
ℏ

x̂
(
e−ixp̂ℏ |x=0⟩

)
X̂|x⟩ = eix

p̂
ℏ ei

xp̂
ℏ X̂e−ixp̂ℏ︸ ︷︷ ︸

Hadamard

|x=0⟩

= e−ix p̂
ℏ

(
x̂+

ix

ℏ
[p̂, x̂] +

1

2

(
ix

ℏ

)2

[p̂, [p̂, x̄]] + · · ·

)
|x=0⟩

= e−ixp̂ℏ (x̂+ x)|x=0⟩.
But, x̂|x=0⟩ = 0 |x=0⟩=0 ⇒

x̂|x⟩ = xe−ixp̂ℏ |x=0⟩ = x|x⟩

So it is an eigenfunction!
The operator e−ixp̂ℏ is called the translation operator.
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Before we calculate the wavefunction, it is worthwhile to talk about what it really
is. The wavefunction is constructed by the overlap of two eigenfunctions from non-
commuting operators. We should not think of this as a physical state the particle
is in inbetween measurements. It is instead a calculational tool used to determine
the results of experiments. Oftentimes, conventional QM instruction overemphasizes
the importance of the wavefunction in coordinate space. You should not. We can
interpret the overlap in two ways. For example ψn(x) = ⟨x|n⟩ can be thought of as the
probability amplitude to find a particle that has energy En to be found in the region
near x (we assume the energies are nondegenerate for simplicity here). Similarly, the
probability amplitude (technically the complex conjugate of the probability amplitude)
to find a particle located near x to have energy En. It is important to note that

|⟨x|n⟩|2 = |⟨n|x⟩|2,

so the probabilities of both statements are the same.
It is easy to overemphasize the importance of ψ(x), even though we can also find

ψ(p) and other wavefunctions. When we look at this from an operator perspective,
we will see that we can employ translation to relate the amplitude at the origin to the
ampitude anywhere else. Amazingly, the results come entirely from operator algebra
and the fact that [x̂, p̂] = iℏ. In particular, we do not need the Schrodinger equation or
any other differential equation to tell us how to determine the wavefunction. It follows
from the properties of the ground state and the ladder operators. This holds not just
for the simple harmonic oscillator, but we will see it holds for all solvable problems
later in the course!

Now we calculate the wave function of the simple harmonic oscillator in coordinate
space:

ψn(x) = ⟨x|n⟩ = ⟨x=0|ei
xp̂
ℏ

(
â†
)n

√
n!

|0⟩.

But, p̂ = (â−â†)mω0

2i

√
2ℏ

mω0
= −i

√
ℏmω0

2

(
â− â†

)
. So, the operator ei

xp̂
ℏ = ex

√
mω0
2ℏ (â−â†).

The question we now have is how do we use these operators to get the wavefunction?
We only know two things about the states

â|0⟩ = 0 and x̂|x=0⟩ = 0.

This means
eαâ|0⟩ = |0⟩ for any α

and
eβx̂|x=0⟩ = |x=0⟩ for any β.

These relations ane very important. Always look for such annihilation relations in
your work!

This then leads to a potential strategy to simplify the matrix element that gives the
wavefunction. We need to convert eαp̂ into some kind of eα′x̂. Recalling that p̂ ∝ â− â†
and x̂ ∝ â+ â† tells us we should try the following:
1.) split up eip̂ = e−αâ†eαâ× correction terms
2.) move eαâ to the right until it disappears when it hits |0⟩
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3.) replace it by e−αâ|0⟩ = |0⟩
4.) move to the left until next to e−αa†

5.) bring into the same exponent e−c(â+â†)× correction terms
6.) operate onto ⟨x=0| where ⟨x=0|e−c(â+â†) = ⟨x=0|.

This will get rid of the full exponential form. Then we need to determine how to
deal with the rest of the expression. To do that we work again with the same facts
â|0⟩ = 0 ⟨x=0|x̂ = 0 and use them to simplify until we get the final wavefunction.

Now, we go through the technical details carefully.

Recall e
ixp̂
ℏ = exp

[
x

√
mω0

2ℏ
(
â− a†

)]

= exp

x√mω0

2ℏ

−â†︸︷︷︸
Â

+ â︸︷︷︸
B̂

 .
Recall as well

[
â, â†

]
= 1, so use BCH

eÂeB̂ = eÂ+B̂+ 1
2
[Â,B̂] or eÂeB̂e−

1
2
[Â,B̂] = eÂ+B̂.

Here, Â = −x
√

mω0

2ℏ â
† B̂ = x

√
mω0

2ℏ â [Â, B̂] = mw0

2ℏ x
2.

So

ψn(x) = ⟨x=0|e
−mω0x

2

4ℏ
√
n!

e−x
√

mω0
2ℏ â†ex

√
mω0
2ℏ â(â†)n 1︸︷︷︸

e
−x

√
mω0
2ℏ â

e
x

√
mω0
2ℏ â

|0⟩

=
e−

mω0x
2

4ℏ
√
n!

⟨x = 0|e−x
√

mω0
2ℏ â†

(
ex

√
mω0x

2

2ℏ ââ†e−x

√
mω0x

2

2ℏ â

)n

︸ ︷︷ ︸
Hadamard

ex
√

mω0x
2

2ℏ â|0⟩︸ ︷︷ ︸
|0⟩

=
e−

mω0x
2

4ℏ
√
n!

⟨x=0|e−x
√

mω0
2ℏ â† 1︸︷︷︸

e
−x

√
mω0
2ℏ â

e
x

√
mω0
2ℏ â

(
â+ x

√
mω0

2ℏ

)n

|0⟩︸︷︷︸
replace with e

−x

√
mω0
2ℏ â|0⟩

=
e−

mω0x
2

4ℏ
√
n!

⟨x = 0|e−x
√

mω0
2ℏ â†e−x

√
mω0
2ℏ â

(
ex
√

mω0
2ℏ ââ†e−x

√
mω0
2ℏ â︸ ︷︷ ︸

Hadamard

+x

√
mω0

2ℏ

)n

|0⟩

=
e−

mω0x
2

4ℏ
√
n!

⟨x = 0| e−x
√

mω0
2ℏ â†e−x

√
mω0
2ℏ â︸ ︷︷ ︸

BCH Â=−x
√

mω0
2ℏ â† B̂=−x

√
mω0
2ℏ â

â† + x

√
2mω0

ℏ︸ ︷︷ ︸
twice as much


n

|0⟩

=
e−

mω0x
2

4ℏ
√
n!

⟨x = 0|e−x
√

mω0
2ℏ (â+â†)− 1

2
mω0
2ℏ x2

(
â† + x

√
2mω0

ℏ

)n

|0⟩.
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Recall: â† + â =
√

2mω0

ℏ x̂

=

twice as large an exponent︷ ︸︸ ︷
e−

mω0x
2

2ℏ
√
n!

⟨x=0|e−x
mω0
ℏ x̂

(
â† + x

√
2mω0

ℏ

)n

|0⟩.

But, x̂|x=0⟩ = 0 ⇒ ⟨x=0|e−x
mω0
ℏ x̂ = ⟨x=0|, so

ψ0(x) =
e

−mω0x
2

2ℏ
√
n!

⟨x=0|

(
â† + x

√
2mω0

ℏ

)n

|0⟩ .

Lets look at n = 0 and n = 1 first:

n = 0 ψ0(x) = e−
1
2

mω0x
2

ℏ ⟨x=0 | 0⟩

n = 1 ψ1(x) = e−
1
2

mω0x
2

ℏ ⟨x=0|

(
â† + x

√
2mω0

ℏ

)
|0⟩

We will use “add zero” to convert the raising operator into an operator proportional
to a position operator via â† = â† + â− â =

√
2mω0

ℏ x̂− â. So, we have

ψ1(x) = e−
1
2

mω0
x

x2⟨x=0|

(
√
2mω0

gives 0 on left
x̂− â

gives 0 on right
+ x

√
2mω0

ℏ

)
|0⟩

ψ1(x) = e−
1
2

mω0x
2

ℏ x

√
2mw0

ℏ
⟨x=0|0⟩.

Define Hn

(√
mω0

ℏ x
)
=

√
2n

⟨x=0|0⟩︸ ︷︷ ︸
factors need to relate to Hermite’s work

⟨x=0|
(
â† + x

√
2mω0

ℏ

)n
|0⟩. We

just showed that H0 = 1 and H1 = 2
√

mω0

ℏ x from our calculations of ψ0 and ψ1. We
now find a recurrence relation for general n. We first split off one factor in the matrix
element to the left, and rework it as we did for the first excited state:

Hn

(√
mω0

ℏ
x

)
=

√
2n

⟨x=0|0⟩
⟨x=0|

(
â† + x

√
2mω0

ℏ

)(
â† + x

√
2mω0

ℏ

)n−1

|0⟩

=

√
2n

⟨x=0|0)
⟨x=0|â†

(
â† + x

√
2mω0

ℏ

)n−1

|0⟩+ 2x

√
mω0

ℏ
Hn−1

(√
mω0

ℏ
x

)
.
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But,
〈
x=0|â† = ⟨x=0|(−â) since ⟨x=0|

(
â+ â†

)︸ ︷︷ ︸
prop. to x̂

= 0 and

â

(
â† + x

√
2mω0

ℏ

)n−1

|0⟩ =

â,(â† + x

√
2mω0

ℏ

)n−1
 |0⟩ since â|0⟩ = 0

= (n− 1)

(
â† + x

√
2mω0

ℏ

)n−2

|0⟩

So Hn

(√
mω0

ℏ
x

)
= 2

√
mω0

ℏ
xHn−1

(√
mω0

ℏ
x

)
− 2(n− 1)Hn−2

(√
mω0

ℏ
x

)
This, combined with the H0 and H1 values already found are the recurrence relations
for the Hermite polynominals, summarized in the following table.

n Hn(y)
0 1
1 2y
2 4y2 − 2
3 8y3 − 12y
4 16y4 − 48y2 + 12
5 32y5 − 160y8 + 120y

Note, this is the physicist’s convention. Mathematicians use a different one.

The last thing we do is normalize the wavefunction. This requires us to normalize
just the ground state, because we have otherwise been working with normalized states.

∫ +∞

−∞
ψ2
0(x) = 1 =

∫ +∞

−∞
e−

mω0
ℏ x2|⟨x=0|0⟩|2

=

√
πℏ
mω0

|⟨x=0|0⟩|2

⇒ ⟨x=0|0⟩ =
(mω0

ℏπ

) 1
4

4 Uncertainty
Everything is done algebraically and comes from operators! No series solutions of dif-
ferential equations!

We end by examining uncertainty x̂ =
√

ℏ
2mω0

(â+ â†)
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(∆x)2n = ⟨n|x̂2|n⟩ − (⟨n|x̂|n⟩)2

=
ℏ

2mω0

⟨n|
(
â+ â†

)2 |n⟩ − ℏ
2mω0

(
⟨n|
(
â+ â†

)
|n⟩
)2

=
ℏ

2mω0

1

n!
⟨0|(â)n

(
â+ â†

)2 (
â†
)n |0⟩

− ℏ
2mω0

1

(n!)2

⟨0|(â)n
(
â+ â†

)︸ ︷︷ ︸
=0 since we cannot pair all â and â†

(
â†
)n |0⟩


2

=
ℏ

2mω0n!
⟨0|(ân( â2︸︷︷︸

0

+ââ† + â†â︸︷︷︸
=ââ†−1

+(â†)2︸︷︷︸
0

)(â†)n|0⟩

(∆x)2n =
ℏ

2mω0

(2n+ 1)

p̂ = i

√
ℏmω0

2
(â− â†)

(∆p)2n = −ℏmω0

2
[⟨n|(â− â†)2|n⟩ − (⟨n|(â− â†)|n⟩)2︸ ︷︷ ︸

0

]

and we have ⟨n| â2︸︷︷︸
0

−2ââ† + (â†)2︸︷︷︸
0

|n⟩ = −(2n+ 1)

(∆p)2n =
ℏmω0

2
(2n+ 1)

So we find that (∆x)n(∆p)n =
ℏ
2
(2n+ 1) .

The uncertainty is minimal for the ground state but grows with n.
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