Phys 506 lecture 30: Landau-Zener tunneling

1 Introduction
When we studied magnetic resonance, we found the Hamiltonian became
Hot = —h(Q — w)S, —vB S,

in the rotating frame, with By = % being the stationary field and B; the ro-
tating field at frequency w. Thus, the spin sees a static field pointing in some
direction which it precesses about:

MO — w)
v

Begs = Z+ Bik.

Suppose we start with the spin up and w — 0. As w — 0, B lies along the 2
direction. As w increases, Beg rotates until it is in the —Z direction. If the spin
precesses about the B axis as w is slowly increased, it goes from spin up as
w — 0 to spin down as w — oo.
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Figure 1: Schematic that shows how B,y aligns along the positive z direction
as wto0 and the —z direction as w — oo. Hence, if the spin precesses about B,
and we ramp w from 0 to oo, then the spin will start off precessing as a spin up
particle, but will end as a s spin down particle. That is is flipped.
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2 Landau-Zener problem
Hence, the spin can flip by ramping w slowly. This type of flip of the spin is

often studied as a 2 x 2 problem called the Landau-Zener problem. Here, the
Hamiltonian is given by:

H(t) = (“5}5 _‘gt) = 6to, + Vo,

and is time-dependent. The instantaneous energy eigenvalues are:
(6t — E) (=6t —E)—-V?=0
which simplifies to E2 = (6t)2 + V2 or:
EL(t) = £+/(0t)2 + V2.

We can plot this as:
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Figure 2:

where the dashed line is for V' = 0. The eigenfunctions can always be written
in the following form:

= () e = (nd)

where 0 is a function of time. These are the instantaneous eigenvectors. This
form always holds since the states are orthonormal. To find 6(t), we force the
eigenvalue equation to work:

H(t)|+) = B+ ()]+),
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which gives:

6 0 0
24 Vsin= = 2 1 12 Z
0t cos 5 + Vsin 5 (6t)2 4+ V2 cos 3"

Simplifying, we obtain:

6  \(0t)2+V2 -6t
- T ,

t —
an
Using the trig identity
0 0 tan ¢ + tan ¢
tanf =tan | - + - | = —2— -2
an an<2+2) 1—taHQg
We get:
tan 8 24/ (0t)% + V2 -t 1
11 =
14

( (6t)2+V275t)2
]. - #

2¢/(5t)2+ V2 — 6t V2

v V2 ((61)2 + V2) — 612 + 20t /(01)2 + V2
2V /(61> + V2 -t V
26t(\/(5t)2 + V2 —ot) 6Ot

t
Thus, we get:

v
tanf = &

Note that § = 7 att — —oo and runs down to 0 at ¢t — oco. We also have that
% < 0 as shown below.

3 Solution for small §
NQW, recall our first attempt at time-dependent problems, in which we started
" 9(®) = 3 eal®ln(t)

H(®)|n(t)) = Ea(t)In(1)).

And hence, we get the time-dependent Schrédinger equation becomes:

9|n(t))

ingpl6(0) = 3 (%50 + ihea (02500 ) = H@10(0) = 2 en OB, OInte)

dt ot

Let: .
e () = an(t) exp Hi / En(t’)dt’]

3
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The phase in the exponential is called the dynamical phase. Then, taking the
derivative, we find:

d d

ih—cn(t) = mfan(t)e—% JUEL ()t an(t)e f‘En(t')dt/En(t)
dt dt
and we get:
’ ’ _ 4 [t ’ ’ 8|n(t)>
B L [P En(t")dt ¢ W (t - [YE,(t)dt _
ZZ[ )/ n(t)) + an(t)e Pt =0
Multiplying by (m(t)|exp(Z [* E,.(t')dt’"), we obtain:

i [t ’ ’ (m(t 2 n(t

%am(t) = = Y (et /(e -En)ar D),
n#m

For us, we assume the system starts in the lowest energy state |—). If the ramp-

ing § — 0in time is slow, the state essentially remains in |—) with the probability

of it being in |+) being very small. Hence, a_(t) ~ 1 and oy (—o0) = 0. The

above equation gives (after integrating):

0
hf - (t")—E4(t)) |
/ dta_(t)e )
Since <f|%|f> = 0 as we now show:
QH_ do 1 ( sinj __1@_>
ot Todt2 cosg 24t
0 df1 (cos 1d6
EH dt2<sm3>_2dt|+>'
Thus: ) )
(~121-) = (+Z]+) =0
(Hgl-) =3%
(~5+) =~ %
Therefore: -
aloc) =y [ e ST
o dt

Now recall the equation tan () = ¥ and rearrange it to get sec? 0% = — V-

and solve for df /dt to get:
df Vv 1 Vo

T ) 2 2 2
dt ot 1+ (%) (0t)2+V

Plugging this for our formula for a. (c0), we get:

1 [ Vi ¢ /
~ = Ve E R (st)2+V2dt
oy (00) 2/0 dt(5t)2+V e .
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One can evaluate this using complex analysis to give:

T _ 2
Ze wV=/6

vy (00) ~ 3

or:

2
P(t) = Ja (o0) = Tre ™V
Note however that this result is only approximate. The correct answer, worked
out by Zener using parabolic cylinder functions which solve Weber’s equation,
yields:
P(t) — e*ﬂ\/z/é

4 Summary of the results

This holds for all §, not just in the limit § — 0. So as § is made large, the proba-
bility to not flip the spin grows. Further note that this is a nonperturbative result
in 6, so regular time-dependent perturbation theory will not work well. This is
essentially because the time-dependent piece of H (¢) varies from very large to
very small and is not always small. In pictures we have:

prb nod Fflip

\__/ = e VIS

For the adiabatic limit, § — 0 and we always flip. For the diabatic limit, § — co
and we never flip. The true case is somewhere in between.

One can also solve the problem numerically, but it has a number of chal-
lenges. One needs to evolve over an infinite time range, and the result has sig-
nificant oscillations that are very slow to damp. Using a combination of ideas
can allow you to get accurate results.
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