
Phys 506 lecture 30: Landau-Zener tunneling

1 Introduction
When we studied magnetic resonance, we found the Hamiltonian became

Ĥrot = −ℏ(Ω− ω)Ŝz − γB1Ŝx

in the rotating frame, with B0 = ℏΩ
γ being the stationary field and B1 the ro-

tating field at frequency ω. Thus, the spin sees a static field pointing in some
direction which it precesses about:

Beff =
ℏ(Ω− ω)

γ
ẑ +B1x̂.

Suppose we start with the spin up and ω → 0. As ω → 0, Beff lies along the ẑ
direction. As ω increases, Beff rotates until it is in the −ẑ direction. If the spin
precesses about the Beff axis as ω is slowly increased, it goes from spin up as
ω → 0 to spin down as ω → ∞.

Figure 1: Schematic that shows how Beff aligns along the positive z direction
as ωto0 and the−z direction as ω → ∞. Hence, if the spin precesses aboutBeff ,
and we ramp ω from 0 to∞, then the spin will start off precessing as a spin up
particle, but will end as a s spin down particle. That is is flipped.
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2 Landau-Zener problem
Hence, the spin can flip by ramping ω slowly. This type of flip of the spin is
often studied as a 2 × 2 problem called the Landau-Zener problem. Here, the
Hamiltonian is given by:

Ĥ(t) =

(
δt V
V −δt

)
= δtσz + V σx

and is time-dependent. The instantaneous energy eigenvalues are:

(δt− E)(−δt− E)− V 2 = 0

which simplifies to E2 = (δt)2 + V 2 or:

E±(t) = ±
√
(δt)2 + V 2.

We can plot this as:

Figure 2:

where the dashed line is for V = 0. The eigenfunctions can always be written
in the following form:

|+⟩ =
(
cos θ

2

sin θ
2

)
and |−⟩ =

(
sin θ

2

cos θ
2

)
,

where θ is a function of time. These are the instantaneous eigenvectors. This
form always holds since the states are orthonormal. To find θ(t), we force the
eigenvalue equation to work:

Ĥ(t)|+⟩ = E+(t)|+⟩,

2



Quantum Mechanics II Lecture 29

which gives:

δt cos
θ

2
+ V sin

θ

2
=

√
(δt)2 + V 2 cos

θ

2
.

Simplifying, we obtain:

tan
θ

2
=

√
(δt)2 + V 2 − δt

V
.

Using the trig identity

tan θ = tan

(
θ

2
+
θ

2

)
=

tan θ
2 + tan θ

2

1− tan2 θ
2

,

We get:

tan θ =
2
√

(δt)2 + V 2 − δt

V

1

1−
(√

(δt)2+V 2−δt
)2

V 2

=
2
√
(δt)2 + V 2 − δt

V
· V 2

V 2 − ((δt)2 + V 2)− δt2 + 2δt
√
(δt)2 + V 2

=
2V

√
(δt)2 + V 2 − δt

2δt(
√

(δt)2 + V 2 − δt)
=
V

δt

Thus, we get:

tan θ =
V

δt
.

Note that θ = π at t → −∞ and runs down to 0 at t → ∞. We also have that
dθ
dt < 0 as shown below.

3 Solution for small δ
Now, recall our first attempt at time-dependent problems, in which we started
with:

|ψ(t)⟩ =
∑
n

cn(t)|n(t)⟩

Ĥ(t)|n(t)⟩ = En(t)|n(t)⟩.

And hence, we get the time-dependent Schrödinger equation becomes:

iℏ
∂

∂t
|ψ(t)⟩ =

∑
n

(
iℏ
dcn(t)

dt
|n(t)⟩+ iℏcn(t)

∂|n(t)⟩
∂t

)
= Ĥ(t)|ψ(t)⟩ =

∑
n

cn(t)En(t)|n(t)⟩

Let:
cn(t) = αn(t) exp

[
− i

ℏ

∫ t

En(t
′) dt′

]
.
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The phase in the exponential is called the dynamical phase. Then, taking the
derivative, we find:

iℏ
d

dt
cn(t) = iℏ

d

dt
αn(t)e

− i
ℏ
∫ t En(t

′) dt′ + αn(t)e
− i

ℏ
∫ t En(t

′) dt′En(t)

and we get:

iℏ
∑
n

[
d

dt
αn(t)e

− i
ℏ
∫ t En(t

′) dt′ |n(t)⟩+ αn(t)e
− i

ℏ
∫ t En(t

′) dt′ ∂|n(t)⟩
∂t

]
= 0.

Multiplying by ⟨m(t)| exp( i
ℏ
∫ t
Em(t′)dt′), we obtain:

d

dt
αm(t) = −

∑
n ̸=m

αn(t)e
− i

ℏ
∫ t(En(t

′)−Em(t′))dt′ ⟨m(t)| ∂∂t |n(t)⟩
iℏ

.

For us, we assume the system starts in the lowest energy state |−⟩. If the ramp-
ing δ → 0 in time is slow, the state essentially remains in |−⟩with the probability
of it being in |+⟩ being very small. Hence, α−(t) ∼ 1 and α+(−∞) = 0. The
above equation gives (after integrating):

α+(∞) = −
∫ ∞

−∞
dt α−(t)e

i
ℏ
∫ t(E−(t′)−E+(t′))dt′⟨+| ∂

∂t
|−⟩

Since ⟨−| ∂∂t |−⟩ = 0 as we now show:

∂

∂t
|+⟩ = −dθ

dt

1

2

(
sin θ

2

− cos θ
2

)
= −1

2

dθ

dt
|−⟩

∂

∂t
|−⟩ = dθ

dt

1

2

(
cos θ

2

sin θ
2

)
=

1

2

dθ

dt
|+⟩.

Thus: 
⟨−| ∂∂t |−⟩ = ⟨+| ∂∂t |+⟩ = 0

⟨+| ∂∂t |−⟩ = 1
2
dθ
dt

⟨−| ∂∂t |+⟩ = − 1
2
dθ
dt .

Therefore:
α+(∞) ∼ −1

2

∫ ∞

−∞
dt
dθ

dt
e

2i
ℏ

∫ t
√

(δt′)2+V 2dt′ .

Now recall the equation tan θ(t) = V
δt and rearrange it to get sec2 θ dθ

dt = − V
(δt2)

and solve for dθ/dt to get:

dθ

dt
= − V

δt2
1

1 +
(
V
δt

)2 = − V δ

(δt)2 + V 2

Plugging this for our formula for a+(∞), we get:

α+(∞) ∼ 1

2

∫ ∞

0

dt
V δ

(δt)2 + V 2
e

2i
ℏ

∫ t
√

(δt′)2+V 2dt′ .
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One can evaluate this using complex analysis to give:

α+(∞) ∼ π

3
e−πV 2/δ

or:
P (t) = |α+(∞)|2 =

π2

9
e−πV 2/δ

Note however that this result is only approximate. The correct answer, worked
out by Zener using parabolic cylinder functions which solve Weber’s equation,
yields:

P (t) = e−πV 2/δ

4 Summary of the results
This holds for all δ, not just in the limit δ → 0. So as δ is made large, the proba-
bility to not flip the spin grows. Further note that this is a nonperturbative result
in δ, so regular time-dependent perturbation theory will not work well. This is
essentially because the time-dependent piece of H(t) varies from very large to
very small and is not always small. In pictures we have:

For the adiabatic limit, δ → 0 and we always flip. For the diabatic limit, δ → ∞
and we never flip. The true case is somewhere in between.

One can also solve the problem numerically, but it has a number of chal-
lenges. One needs to evolve over an infinite time range, and the result has sig-
nificant oscillations that are very slow to damp. Using a combination of ideas
can allow you to get accurate results.
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