
Phys 506 lecture 33: Hydrogen and light

1 Introduction
Suppose hydrogen interacts with light. We describe the light with a vector po-
tential A(r̂, t) in the Coulomb gauge, where ∇ ·A = 0, and we ignore the fine
structure. The Hamiltonian is given by:

Ĥ =
1

2m

(
p̂+

|e|
c
Â

)2

− e2

r̂
+

|e|ℏ
mc

S ·B(r̂, t),

where we have minimally coupled the momentum to include the canonical in-

teraction with a field in the 1
2m

(
p̂+ |e|c Â

)2

term and we have included an in-
teraction of the spin with a magnetic field B = ∇ × Â term as the last term.
Expanding the Hamiltonian, we get:

Ĥ =
p̂2

2m
+

|e|
2mc

(
p̂ · Â+ Â · p̂

)
+

e2

2mc2
Â · Â− e2

r̂
+

|e|ℏ
mc

S ·B

Note here that we have neglect the Â · Â term since it is assumed to be small
and the Â and p̂ commute in the Coulomb gauge. Thus, the Hamiltonian can
be written in the form:

Ĥ = Ĥ0 + V̂ ,

where:
Ĥ0 =

p̂2

2m
− e2

r̂
, V̂ =

|e|
mc

Â · p̂+
|e|ℏ
mc

S · (∇× Â).

Using the plane-wave ansatz, let:

Â = A0e
i(k·̂r−ωt) +A∗0e

−i(k·̂r−ωt).

Then, the perturbation potential is:

V̂ (t) = V̂ωe
−iωt + V̂−ωe

iωt

where we assume a harmonic perturbation with V̂−ω = V̂ †ω and:

V̂−ω =
e

mc
eik·̂r (A0 · p̂+ iℏS · (k×A0)) .
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and V̂ω is the same with i → −i and A0 → A∗0. To get a sense of the scales,
note that usually k of a photon has a wavelength ∼ 100nm and r of an atom
∼ 10−1 nmwhich implies |k ·r| ≪ 1 for optical processes. Thus, we can expand
eik·̂r in powers of k · r̂ as:

V̂ω =
|e|
mc

[
A0 · p̂+ iℏS · (k×A0) + ik · r̂A0 · p̂) +O(k2)

]
For the third term, note that:

k · r̂(A0 · p̂) =
∑
ij

kiA0j r̂ip̂j

=
1

2

∑
ij

kiA0j (r̂ip̂j + p̂ir̂j + r̂ip̂j − p̂j r̂i + p̂j r̂i − p̂ir̂j) ,

where we can simplify by noting p̂ir̂j − p̂j r̂i = [p̂i, r̂j ] = iℏδij , but
∑

i kiA0iiℏ =
iℏk ·A0 = 0 in the Coulomb gauge. Therefore, we have:

V̂−ω =
|e|
mc

A0 · p̂+
iℏ
2
(L̂+ 2Ŝ) · (k×A0) +

i

2

∑
ij

kiA0j(r̂ip̂j + p̂j r̂i)


where we used the fact that p̂j r̂i − p̂ir̂j = ϵijkℏL̂k.

2 Calculating the matrix elements
To calculate the matrix elements of V̂−ω , we use the following tricks:

p̂ =
im

ℏ
[Ĥ0, r̂] =⇒ ⟨n|p̂|m⟩ = ⟨n| im

ℏ
[Ĥ0, r̂]|m⟩ = imωmn⟨n|ˆ̂r|m⟩

where ωmn = En−Em

ℏ with Ĥ0|m⟩ = Em|m⟩. Further:

r̂ip̂j + p̂j r̂i =
im

ℏ

[
r̂i [H0, r̂j ] +

[
Ĥo, r̂i

]
r̂j

]
=

im

ℏ

[
Ĥ0, r̂ir̂j

]
.

so:
⟨n|r̂ip̂j + p̂j r̂i|m⟩ = imωnm⟨n|r̂ir̂j |m⟩,

and

⟨n|V̂−ω|m⟩ = −i
ωnm

c
A0 · ⟨n| − |e|r|m⟩ − i(k×A0) · ⟨n| −

|e|ℏ
2mc

(L̂+ 2Ŝ)|m⟩

+
ωnm

6c

∑
ij

kiA0j⟨n| − |e|
(
3r̂ir̂j − δij r̂

2
)
|m⟩+O(k2).

The δij r̂2 vanishes since k ·A0 = 0. The above expression also motivates us to
define three quantities: the electric dipole moment D̂ = −|e|r̂ and the mag-
netic dipole moment µ̂ = − |e|ℏ2mc (L̂+2Ŝ) and the electric quadrupole moment
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Q̂ij = −|e|
(
3r̂ir̂j − δij r̂

2
)
. Using these definitions, the expression for V̂−ω be-

comes:

(V̂−ω)nm = −i
ωnm

c
A0·⟨n|D̂|m⟩−i(k×A0)·⟨n|µ̂|m⟩+ωnm

c

∑
ij

kiA0j⟨n|Q̂ij |m⟩+O(k2).

or equivalently:

(V̂−ω)nm = −i
ωnm

c
A0 · (D̂)nm − i(k×A0) · (µ̂)nm +

ωnm

c

∑
ij

kiA0j(Q̂ij)nm +O(k2)

This result also holds for many-electron atoms.

3 Selection rules
The electric dipole moment transition, denoted E1, dominates unless its ma-
trix element vanishes. The magnetic dipole (M1) and electric quadrupole (E2)
transitions are the same order of magnitude and are usually called “forbidden"
transitions. They are important only if E1 vanishes. We thus have the selection
rules:

1. E1: ∆J = ±1, 0 but no 0 → 0 transitions =⇒ ∆S = 0, ∆L =
±1 due to parity arguments

2. M1: ∆J = ±1, 0 no 0 → 0 transitions ∆S = ∆L = 0

3. E2: Jn + Jm ≥ 2 ≥ |Ji − Jf | ≤ 2 no 0 → 0 transitions ∆S = 0

4 Transition rates
To correctly derive the interaction with the electromagnetic field, we need to
properly quantize the photons. We will discuss some of these issues later. For
now, we note that a semiclassical approach and the full quantum analysis give
the same results, so we will do the simpler one.

A0 = ϵ×

√
2πℏc2
ωk

×

{√
n+ 1 for emission

√
n for absorption

where ϵ is the polarization vector of light, i.e. a unit vector perpendicular to k,
ωk = ck and n is the number of photons with polarization vector ϵ and wave
vector k. These terms come rom simple-harmonic oscillator like raising and
lowering operators multiplied by some constants. We can use Fermi’s golden
rule to calculate emission or absorption rates of photons, which are visually
represented as:
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Figure 1: Absorption has a photon absorbed by the initial state and transforms
to the final state. Emission emits a photon from the initial state and ends in the
final state.

Recall Fermi’s golden rule says that the rate of change of probability Γ per solid
angle of photon Ωγ is given by the density of states from converting k integral
to energy integral ργ(k) and the matrix element |Vfi(k)|2:

dΓ

dΩγ
=

∫
dE

2π

ℏ
ργ(k)|ME19k)|2δ(Ef − Ei)

The density of states is given by:

ργ(k) =
1

(2π)3
k2

(
dE

dk

)−1
.

Now use the dispersion relations of the photons E = ℏωk = ℏck to get:

ργ(k) =
1

(2π)3

(
E

ℏc

)2
1

ℏc
=

1

(2π)3
ω2

ℏc3
.

For spontaneous emission with n = 0, we have ω
cA0 =

√
2πωℏϵ andME1(k) =

⟨f |D|i⟩. As a result, we get the differential emission rate to be dΓE1

dΩγ
:

dΓE1

dΩγ
=

ω3

2πℏc3

∣∣∣∣⟨f |ϵ ·D|i⟩
∣∣∣∣2,

where we have the energy of the final atomic state ⟨f | plus ℏω equal the energy
of the initial atomic state |i⟩ from the delta function in the integral over energy.
Hence, ω = ωk = ωnm = ωif . The total rate is found by integrating over the
solid angle:

Γf←i =
∑

polarizations α

∫
dΩ

dΓf←i

dΩ
=

probability
time

.

In the dipole approximation, we have:

Γf←i =
ω3e2

2πℏc3

∫
dΩ

∑
α

|⟨f |ϵ(k, α) · r̂|i⟩|2 .
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Note that the polarization vectors satisfy ϵα · k = 0 in the Coulomb gauge and
completeness gives us:∑

α

ϵi(k, α)ϵj(k, α) +
kikj
|k|2

= δij ⇒
∑
α

ϵi(k, α)ϵj(k, α) = δij −
kikj
|k|2

.

Using these expressions, we get:

Γf←i =
ω3e2

2πℏc3
∑
ij

∫
dΩ

(
δij −

kikj
|k|2

)
⟨f |ri|i⟩⟨i|rj |f⟩

=
ω3e2

2πℏc3
∑
ij

(
δij · 4π − k2δij

|k|2
· 4π · 1

3

)
⟨f |ri|i⟩⟨i|rj |f⟩.

Giving us the final result:

Γf←i =
4ω3e2

3ℏc3
|⟨f |r|i⟩|2

5 Lifetime
If we assume the form ṗ = cp for the Fermi golden rule, then:

Pany←i = e−
∑

any Γany←it = e
− t

τi

where
τi =

1∑
any Γany←i

= total lifetime of state i

and
τf←i =

1

Γf←i
= partial lifetime of state i decaying to state f.

6 Orders of magnitude

Typical atomic frequency is ω ∼ e2

a0c
, so ka0 = ω

c a0 ∼ e2

hc = αwhere α is the fine
structure constant which is approximately 1/137 ≪ 1. Hence, to get an order
of magnitude approximation, we can get:

ΓE1 ∼ w3e2

hc3
a20 ∼ e8

a0ℏ4c3
∼ α4 c

a0
∼ 10−8

4

3× 108 m/s
0.5× 10−10 m

∼ 1.5× 109 sec−1

which implies
τE1 ∼ 10−10 sec

Forbidden rates are typically smaller by (ka)
2 ∼ t2, so we expect τM1, τE2 ∼

10−5 to 10−6 sec.
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