
Phys 506 lecture 34: What is a photon?

1 Classical Maxwell equations

In the next two lectures, we will summarize quantum optics with the goals of (1) establishing pre-
cisely what a photon is and (2) describing how quantum optics principles are employed in the
LIGO experiment to improve the precision of the measurements. It will be a crash course. You
need to review ladder operators for the simple harmonic oscillator and coherent states for this lec-
ture.

We begin with classical description of an electric field given by

E(r, t) =
∑
l

εlEl(t)e
ikl·r + c.c.

where we are describing a real traveling wave. Here l denotes the mode described by the wavevec-
tor kl and polarization εl. Here, we will focus on linear polarization only. The function El(t) can
be complex-valued.

We require the wave to satisfy Maxwell’s equations.

∇ ·E(r, t) = 0, ∇×E(r, t) = −∂B(r, t)

∂t
, ∇ ·B(r, t) = 0, ∇×B(r, t) =

1

c2
∂E(r, t)

∂t

Using the fact that ∇eikl·r = ikle
ikl·r and ∇ · E = 0, we can say that kl ⊥ εl. Also, ∇ × E =

−∂tB =⇒ B(r, t) ∝ kl × εl. Then∇ ·B = 0 is automatically satisfied. We end up with

∂2El(t)

∂t2
= −

k2l
c2
El(t).

Define the angular frequency ωl =
kl
c . Then El(t) = El(0)e

−iωlt.

=⇒ B(r, t) =
∑
l

kl × εl
ωl

El(t)e
ikl·r + c.c.

2 Quantizing the fields

We define the single photon amplitude as ε(1)l =
√

ℏωl
2ϵ0Vl

and introduce Vl as the quantization
volume for mode l. We will be working in a volume L3 with periodic boundary conditions so
kl =

2π
L (nx, ny, nz) for nα ∈ Z. The polarization is one of the two directions perpendicular to kl.

Note that we use kl, εl, and kl × εl as a triad to define the coordinates of the three dimensions.
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We also choose ε−l = εl when l : 2π
L (nx, ny, nz; εl) and −l : 2π

L (−nx,−ny,−nz; ε−l). This will help
us with calculating the total energy. But before that, we note two more things. We will be writing
El(t) = εlαl(t) with αl(t) possibly complex. The we also define the two quadrature parameters

Ql(t) =

√
ℏ
2
(αl(t) + α∗

l (t))

Pl(t) = −i
√

ℏ
2
(αl(t)− α∗

l (t))

The energy is given by

E =
ε0
2

∫
d3r (E2 + c2B2)

In calculating this, we note that ∫
d3r eikl·r−kl′ ·r = δnl,nl′V.

We end up with two types of terms: Those with l = l′ and those with l = −l′. Then (you should
do this),

E =
ε

2
V
∑
l

(
2|El(t)|2 − El(t)E−l(t)− E∗

l (t)E
∗
−l(t) + 2|El(0)|2 + El(t)E−l(t) + E∗

l (t)E
∗
−l(t)

)
= 2ε0V

∑
l

(εl)
2|αl|2

=
∑
l

ℏωl|αl|2

Now we quantize: Let Ql → Q̂l and Pl → P̂l with [Q̂l, P̂l′ ] = iℏδll′ . Then define

âl =
1√
2ℏ

(Q̂l + iP̂l)

â†l =
1√
2ℏ

(Q̂l − iP̂l).

Written in terms of the quadratures,

H =
∑
l

ωl

2
(Q̂2

l + P̂ 2
l ),

which shows the relationship with the simple harmonic oscillator. Back to the field, we now have
an operator

Ê(r) = Ê(+) + Ê(−) = i
∑
l

εlâle
ikl·r + h.c.

The eigenstates are labeled by number operator eigenstates

|n1, n2, . . .⟩ =
(â†1)

n1

√
n1!

(â†2)
n2

√
n2!

. . . |0⟩

and En1··· =
∑

l ℏωl

(
nl +

1
2

)
. Usually, we only include nonzero nl’s in the labeling. Note the vac-

uumhas “infinite energy” given by
∑

l ℏωl
1
2 . But we avoid this energy by focusing on the excitation
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energy with respect to the vacuum given by Eex =
∑

l ℏωlnl.

We will be working in the Heisenberg representation where âl(t) = âle
−iωlt and â†l (t) = â†l e

iωlt.
Now consider a single mode state |nl⟩. The average of the electric field vanishes〈

nl

∣∣∣Ê(r, t)
∣∣∣nl〉 =

〈
nl

∣∣∣âleik·r−iωlt − â†l e
−ik·r+iωlt

∣∣∣nl〉 = 0

since â and â† operators are unbalanced. We calculate the fluctuations from〈
nl

∣∣∣Ê · Ê
∣∣∣nl〉 = −εl · εl(ε

(1)
l )2

〈
nl

∣∣∣â2l ei(2kl·r−2ωlt) − âlâ
†
l − â†l âl + â†2l e

−i(2kl·r−2ωlt)
∣∣∣nl〉

= (ε
(1)
l )2(2nl + 1)

so∆E = ε
(1)
l

√
2nl + 1. In particular, the vacuum (nl = 0) has fluctuations. This is real and respon-

sible for spontaneous emission, Lamb shift, g-2, Casimir effect, etc. A similar calculation shows
that 〈

0
∣∣∣P̂l

∣∣∣0〉 =
〈
0
∣∣∣Q̂l

∣∣∣0〉 = 0〈
0
∣∣∣P̂ 2

l

∣∣∣0〉 =
〈
0
∣∣∣Q̂2

l

∣∣∣0〉 =

√
ℏ
2

so ∆Ql∆Pl =
ℏ
2 , which is a minimum uncertainty state (same as the ground state).

3 Detecting photons

Our next step is to describe photodetection. We will describe a photomultiplier tube which uses
the photoelectric effect and a cascade.

A single photon releases an electron which is accelerated and leads to huge amplification of elec-
trons which can be measured as an electron pulse. The important aspects are that these detectors
are efficient and fast (there are more efficient fast detectors, but we focus on these which is all we
need).

Suppose light is traveling with a areal profile of S and impinging on detectors 1 and 2. The prob-
ability to detect one photon is dP (r, t) = W (1)(r, t)dS dt withW (1)(r, t) = s|Ê+(r, t) |ψ⟩ |2, which
is the single-photon detection probability. s is the sensitivity of the detector and |ψ⟩ is the photon
state.

The probability to detect two photons is dP (r1, t1, r2, t2) =W (2)(r1, t1, r2, t2)dS dtwith

W (2)(r1, t1, r2, t2) = S2|Ê+(r2, t2)Ê
+(r1, t1) |ψ⟩ |2

and
Ê+

l (r, t) = iεlε
(1)
l âle

i(kl·r−iωlt)

Consider a single photon state. We have |1l⟩ = â†l |0⟩. Then,

W (1)(r, t) = s|iεlε
(1)
l ei(kl·r−iωlt)âlâ

†
l |0⟩ |

2
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But
âlâ

†
l |0⟩ = [âl, â

†
l ] |0⟩ = |0⟩

soW (1)(r, t) = s. Similarly, we have that

W (2)(r1, t1, r2, t2) = s2|iεlε
(1)
l ei(kl·r−iωlt)iεlε

(1)
l ei(kl·r−iωlt)âlâlâ

†
l |0⟩ |

2 = 0,

since âlâlâ†l |0⟩ = 0. So a single photon can only be measured once! Measuring one photon alters
the quantum state so it cannot be measured again. This is, in many respects, one of the critical
aspects of what a photon is.

4 Making a single photon source

Wenowdescribe how onemakes a single photon source. Here is the two photon excitation process,
and a two photon decay. The two photons emerge within a few nanoseconds. So, by observing ωH ,
one is sure a photon ω0 is emitted within the next 10-15 ns.

Collect the atoms at the focus of a parabolic mirror. Then, the photon will “live” in a volume
given by S ⊂ T with T being the lifetime of the excited state. Recall

dP (1)

dt dS
= s|ε(1)l |2 = sℏωl

2ε0Vl
=

sℏωl

2ε0ScT

So
dP (1)

dt
=

∫
dS

dP (1)

dt S
=

sℏωl

2ε0cTl

and ∫
T

dP (1)

dt
=
sℏωl

2εc
= 1

for a perfect detector. So Sperfect = perfect efficiency = 2ε0
ℏωl

. We define the quantum efficiency as

s = ηSperfect

Then, ω(1) =
η

ST
. The real photon emitted is in a wavepacket |ψ⟩ =

∑
l cl |1l⟩with

cl =
κeiωt0

ωl − ω0 + iΓ2
= Lorentzian lineshape

κ = normalization constant, ω0 = frequency of the excited state, Γ = lifetime =
√

cπ
L .

Assume the photon is emitted at time t0. It must travel a distance z to reach the detector. So,

W (1)(z, t) = s|Ê+(z, t) |ψ(t0)⟩ |2 = s|
∑
l

εlε
(1)
l âle

−iωl(− z
2
+t)

∑
l′

√
cΓ
L e

iωl′ t0

(ωl′ − ω0) + iΓ2
â†l′ |0⟩ |

2

But âlâ†l′ |0⟩ = δll′ |0⟩ so

= s|
∑
l

iε0ε
(1)
l

√
cΓ

L

e−iωl(t−t0− z
c
)

(ωl − ω0) + iΓ2
|0⟩ |2.
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Assuming ε(1)l is small, since Γ is small, and transform the sum to an integral.

i

∫ ∞

−∞
dωl

L

2πc

(
cΓ

L

)1/2 e−iωl(t−t0− z
c
)

ωl − ω0 + iΓ2
|0⟩ = i

L

2πc

(
cΓ

L

)1/2

e−ω0(t−t0− z
c
)(−2πiΘ(t−t0−

z

c
))e−

Γ
2
(t−t0− z

c
) |0⟩

and
W (1)(z, t) = s

ℏω0

2ε0V

LΓ

c
e−Γ(t−t0− z

c
)Θ

(
t− t0 −

z

c

)
Recall V = sL, s = 2ε0S

ℏω0
. So,

W (1)(z, t) = η
Γ

c
e−Γ(t−t0− z

c
)Θ

(
t− t0 −

z

c

)
.

The probability exponentially decays away from the initial time which has been measured experi-
mentally! These single photon sources can be verified by measuring them on a beam splitter. We
analyze this next:

The beam splitter is a partially silvered mirror that reflects the amplitude with strength r (or −r)
depending on which side (silvered or not) and with strength t. We have

Ê3 = rÊ1 + tÊ2 and Ê4 = tÊ1 − rÊ2.

Theprobability in 3 and 4 for single-photondetection is s|E3+(r3, t3) |ψin⟩ |2 and s|E+
4 (r4, t4) |ψin⟩ |2

where
|ψin⟩ = (γ |1⟩1 +

√
1− γ2 |0⟩1)⊗ |0⟩2

where the efficiency to detect the heralded photon is γ (not all photons are detected). One finds
dP3(t)

dt
= η3|γ|2|r|2Θ

(
t3 − t0 −

z3
c

)
e−Γ(t3−t0− z3

c
)

dP4(t)

dt
= η4|γ|2|r|2Θ

(
t4 − t0 −

z4
c

)
e−Γ(t4−t0− z4

c
).

Integrating over a few 1/Γ’s yields

N3 = η3|γ|2|r|2 and N4 = η4|γ|2|t|2.

Coincidences are of course zero, but in a real experiment, we see coincidence due to dark back-
ground current and more than one atom spontaneously emitting in the measurement window.
We define:

P3 =
N3

NH
, P4 =

N4

NH
, and Pc

Nc

NH

where NH is the number of heralded photons and

α =
Pc

P3P4
=
NcNH

N3N4
.

For a quantum system, we have α < 1. A classical system must have α > 1, since

PC = ⟨W (2)⟩ ≥ ⟨W (1)⟩2 = P3P4.

We can characterize the single-photon quantum nature by observing α < 1.

In summary, a one photon state, given by |1⟩ =
∑

l cl |1l⟩ is an eigenstate of N̂ , but not neces-
sarily Ĥ (it has definite particle number but not necessarily definite energy). When we measure
it, it can be observed only once. It has an extent in time given by some small multiple of 1/Γ with
high probability. Sources of single photons are not just very dim light, as we see next.
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5 Semiclassical sources of light

We end the chapter with a discussion of semiclassical states of light, described by our old friend
the coherent state, which satisfies

âl |αl⟩ = αl |αl⟩

where
|αl⟩ = D(αl) |0⟩ = eαlâl+α∗â |0⟩ .

For a semiclassical state, we have

W (1)(r, t) = s|Ê+(r, t) |αl⟩ |2

= s(ε
(l)
l )2|αl|2

W (2)(r, t, r′, t′) = s2|Ê†(r′, t′)Ê+(r, t) |αl⟩ |2

= s2(ε
(2)
l )4|αl|4 =W (1)(r, t)W (1)(r′, t′)

This is the classical result for a classical field as well.

Note that it shows that even for very dim light, with much less than one photon in each mea-
surement interval, we will sometimes observe two photons in one interval. Furthermore the α for
semiclassical systems is 1. The experiment has been done and verified. This clarifies an old result
where it was believed that classical light becomes a single photon source when very dim. But it
never does.

Incandescent light, LEDs, lasers, are all sources of semiclassical light. Essentially all light sources
we commonly use are semiclassical. Single photon light sources are much more difficult to make.
Next time, we discuss squeezed light, measuring quadratures and how they improve LIGO.

6


