
Phys 506 lecture 35: How LIGO works

In this lecture, we will discuss how to measure the quadratures Q̂l and P̂l, how to reduce the
uncertainty in one value at the expense of the other and how LIGO employs these ideas for higher
precision and to see farther out into the universe.

To start, we note that one cannot directly measure an oscillating electric field of visible light be-
cause it oscillates too fast. The fastest oscilloscopeswork at about 100 GHz , while light’s oscillation
frequency at 1014−1015 Hz is 3−4 orders at magnitude faster. Nevertheless, there are schemes that
do allow us to measure the fields of light by employing clever techniques. The first we will discuss
is heterodyne detection. This involves measuring signals from two light beams, whose frequency
differs by a small amount, and observing the beats of those signals, which oscillate much more
slowly. Let’s see how this works.

1 Heterodyne detection

Figure 1: A beam splitter is shown with two output ports and two input ports. The splitter is
oriented at 45 degrees with a negative slope and the input ports are (1) horizontal from the left,
and (2) vertical from the top. The output ports are (3) vertical going down and (4) horizontal
going left to right. The beam splitter has its silvered surface on the lower edge.

In this experiment, we send in the weak light |α1⟩ that we want to measure and the strong light
|α2⟩, used to "boost" the signal. We measure the photocurrent in channel 4 .

| ψin⟩ = |α1⟩ ⊗ |α2⟩

i4 = qeSw
(1) (r4, t) = qeSs

∥∥∥E(+)
4 ⟨r4, t | ψin⟩

∥∥∥2
E
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4 = tE
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1 − rE

(+1)
2 .
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Here, S is the cross-sectional area and r and t are the reflection and transmission amplitudes.
Assume the frequencies w1 and w2 of the light input to those respective channels are close, so that
we can approximate

E(1)
omega1 ∼ E(1)

ω2
∼ E(1)

ω ω =
ω1 + ω2

2

i4 = qeSs
(
E(1)
ω

)2 ∥∥(tα1e
−iω1t − rα2e

−iω2t
)
|ψi⟩

∥∥2
= qeSs

(
E(1)
ω

)2 {
|t|2 | α1|2 + |r|2|α2|2 − 2Re

(
rt∗ei(ω1−ω2)tα∗

1α2

)}
Let α1 = |α1| eiϕ1 , α2 = |α2|eiϕ2 , and assume r and t are real, then

i4 = qeSs
(
E(1)
ω

)2 {
|t|2 |α1|2 + |r|2 |α2|2 − 2rt |α1| |α2| cos [(ω1 − ω2) t− ϕ1 + ϕ2

]}
Recall s(E(1)

ω )2 = η
ST for light moving in a cylindrical quantization volume. Recall as well that

|α|2 is proportional to the number of photons in the quantization volume since ⟨α|N̂ |α⟩ = |α|2.
This number of photons increases as the length L = cT increases by considering longer time

intervals for the measurement. But Φphot =photon flux = |α|2
T is independent of T (you can think

of this as the "density" of photons). The beam intensity, or energy density, is Φ = Φphot · ℏωl so the
beam intensity satisfies Φ

ℏωl
= |αl|2

T or

|αl| =
√

ΦT

ℏωl
.

So the heterodyne signal becomes

i4(t) = ηqe

{
t2Φ

phot
1 + r2Φ

phot
2 − 2rt

√
Φ
phot
1 Φ

phot
2 cos [(ω1 − ω2)t− ϕ1 + ϕ2]

}
.

Ifwe tune r and t such that t2Φphot
1 = r2Φ

phot
2 , then i4(t) = 2t2Φ

phot
1 ηqe (1− cos ((ω1 − ω2) t− ϕ1 + ϕ2)),

which says the visibility is equal to 1.
The idea is that instead of measuring the small amplitude Φ

phot
1 , we measure a much larger

amplitude
√

Φ
phot
1 Φ

phot
2 . But one must examine the signal to noise ratio to see if there is a true gain:

idirect = ηqeΦ
phot
1 ihetero = ηqert

√
Φ
phot
1 Φ

phot
2 .

The noise is white noise (also called shot noise). I don’t have time to derive this here, but it is
given by ∆idirect =

√
2qeidirect∆f with ∆f = 1

T = bandwidth . So(
Signal
Noise

)
direct

=
idirect√

2qeidirect∆f
=

√
idirect
2qe∆f

=

√
ηΦ

phot
1

2∆f(
Signal
Noise

)
hetero

=
ηqert

√
Φ
phot
1 Φ

phot
2

r
√

2 q2e︸︷︷︸
iαqe

η ΦPhot
2︸ ︷︷ ︸

dominates the noise

∆f
= t

√
ηΦPhot

1

2∆f

So there seems to be no gain. But this analysis ignored the dark current noise. This is a constant
and can make it impossible to observe idirect because it is so small. So with dark current, one can
measure signals via heterodyning that are much smaller than the dark current if |α2| is large. We
don’t have a gain in accuracy, but we lift the signal above the noise floor.
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2 Balanced homodyne detection

This is very similar to heterodyning except now we take ω1 = ω2,k1 = k2,E1 = E2, so there is no
oscillation. Wemeasure now the difference in photocurrents i3− i4. Note that this is the difference
of two photocurrents, measured over a long time interval, not the coincidences.

Recall that

STW
(1)
3,4 (r, t) = η |⟨ψ|N̂3,4 |ψ⟩|2

i3,4 = η
qe
T

∣∣∣⟨ψ|N̂3,4

∣∣∣ψ⟩|2.
We need to express N̂3 − N̂4 in terms of the input creation/annihilation operators. In balanced
homodyne detection, we take r = t = 1√

2
, so

N̂3 =
(
râ†1 + tâ†2

)
(râ1 + tâ2)

=
1

2

(
â†1â1 + â†2â2 + â†1â2 + â†2â1

)
N̂4 =

(
tâ†1 − râ†2

)
(tâ1 − râ2)

=
1

2

(
â†1â1 + â†2â2 − â†1â2 − â†2â1

)
.

So, N̂3 − N̂4 = â†1â2 + â†2â1. We let α2 = αLO = |αLO| eiϕLO with LO = local oscillator, then

i3 − i4 =η
qe
T

⟨ψ1| â†1 |ψ1⟩ |αLO| eiϕLO + ⟨ψ1| â1 |ψ1⟩ |αLO|e−iϕLO

=η
qe
T

|αLO| ⟨ψ1| â†1e
iϕLO + â1e

−iϕLO |ψ1⟩

=η
qe
T

|αLO| {⟨ψ1| â†1 + â1 |ψ1⟩ cosϕLO

+i ⟨ψ1| â†1 − â1 |ψ1⟩ sinϕLO
}

Recall â†1 + â1 ∝ Q̂1 and i
(
â†1 − â1

)
∝ P̂1

So using balanced homodyne detection, we can measure the quadrature operators as functions
of the local oscillator phase. Note as well that the result is independent of the time interval T
because the number of photons grows linearly in the time interval.

We need to now discuss fluctuations/noise.(
N̂3 − N̂4

)2
=

(
â†1â2 + â†2â1

)2
=â†1â

†
1â2â2 + â†1â2â

†
2â1

+ â†2â1â
†
1â2 + â†2â

†
2â1â1.

Put into normal ordered form (all †’s to the left) to find

=â†1â
†
1â2â2 + â†2â

†
2â1â1 + â†1â

†
2â1â2 + â†1â1

+ â†2â
†
1â1â2 + â†2â2 + â†2â

†
2â1â1
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When taking the average with respect to |αLO⟩ â2 → αLO α̂†
2 → α∗

LO

⟨ψin |
(
N̂3 − N̂4

)2
|ψin ⟩ = |αLO|2

{
⟨ψ1| â†1â

†
1|ψ1 ⟩e+2iϕLO + ⟨ψ1| â1â1 | ψ1⟩e−2iϕLO

+ ⟨ψ1| â†1â1 |ψ1⟩+ ⟨ψ1| â1â†1 |ψ1⟩
}
+ ⟨ψ1| â†1â1 |ψ1⟩︸ ︷︷ ︸

neglect bc small compared to |αLO|2

⇒ (∆ (N3 −N4))
2 | ψin⟩ = |αLO|2

{
⟨ψ1|

(
â†1e

iϕLO + â1e
−iϕLO

)2
|ψ1⟩

−
(
⟨ψ1 |

(
â†1e

iϕLO + â1e
−iϕLO

)
|ψ1⟩

)2
}

= |αLO|2
(
∆
(
â†1e

iϕLO + â1e
−iϕLO

))
|ψ1⟩2.

As mentioned before, this is related to the quadrature operators. We can define Q̂1 (ϕLO) =√
ℏ̄
2

(
â†1e

iϕLO + â1e
−iϕLO

)
recalling Q̂1 =

√
ℏ
2

(
â1 + â†1

)
P̂1 = −i

√
ℏ
2

(
â1 − â†1

)
says when ϕLO =

0, we get Q, when ϕLO = π
2 we get P .

Note these are related to the dielectric field amplitude since

Ê(r, t) =
∑
l

εlE
(1)
l

√
2

ℏ

{
−Q̂l sin (klr− ωlt)− P̂l cos (kl · r− ωlt)

}
Q is the real part of the amplitude and P is imaginary part.

In general, we can consider Q̂(θ) and Q̂
(
θ + π

2

)
= P̂ (θ). One can immediately verify that

[Q̂(θ), P̂ (θ)] = iℏ.

We will use these to measure the field. |ψ1⟩ =|α1⟩ α1 = |α1| eiϕ1

⟨ψ1| Q̂(θ) |ψ1⟩ =
√
π

2
⟨α1| â†1e

iθ + â1e
−iθ |α1⟩

=
√
2ℏ cos (θ − ϕ1) |α1|

⟨ψ1| P̂ (θ) |ψ1⟩ = −i
√

ℏ
2
⟨α1| − â†1e

iθ + â1e
−iθ |α1⟩

= −
√
2ℏ sin (θ − ϕ1) |α1| .
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Variances:

⟨ψ1| Q̂(θ)2 |ψ1⟩ =
ℏ
2
⟨α1| â†1â

†
1e

2iθ + â†1â1 + â1â
†
1 + â1â1ê

−2iθ |α1⟩

= ℏ |α1|2 (cos 2 (θ − ϕ1) + 1) +
ℏ
2

= 2ℏ|α1|2 cos2 (θ − ϕ1) +
ℏ
2

⟨ψ1| P̂ (θ)2 | ψ1 ⟩ = −ℏ
2
⟨α1| â†1â

†
1e

2iθ − â†1â1 − â1â
†
1 + â1â1e

−2iθ|α1|

= −ℏ |α1|2 (cos 2 (θ − ϕ1)− 1) +
ℏ
2

= 2ℏ |α1|2 sin2 (θ − ϕ1 ) +
ℏ
2
.

So (∆Q(θ))ψ1 =

√
ℏ
2
= (∆P (Θ))ψ1

(∆Q(θ))ψ1(∆P (Θ))ψ1 =
ℏ
2
= minimal uncertainty state

We can plot the uncertainty in a "phase space"

Prob (Q1, P1) =
1

2π∆Q2
1

e
− (Q1−⟨Q̂1⟩)

2
+(P−⟨P̂l⟩)

2

2∆Q2
1

Use reduced variables Q√
2π
, P√

2π

2∆Q1√
2π

= 1

Figure 2: In a phase space plot, we plot Q horizontal versus P vertical. The ground state is a blob
localized near the origin. We displace by α to get the coherent state. The size of the blob remains
the same.

Time evolution, given by α→ αeiωt, is a clockwise rotation in a circle. The uncertainty, being a
circle, is always the same for Q and P .

Squeezed light trades off the uncertainty for Q to uncertainty in P or vice versa. Recall the
Bogoliubov transformation form HW:

ÂR = coshRâ+ sinhRa† and Â†
R = coshRâ† + sinhRâ[

ÂR, ÂR
†
]
=

(
cosh2R− sinh2R

)
= 1.
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Consider the squeezed operator states to be in onemode l only. A squeezed state satisfies ÂR|α,R⟩ =
α|α,R⟩. Calculate averages by inverting

â = coshRÂR − sinhRÂ†
R

â† = coshRÂ†
R − sinhRÂR.

Then
⟨α,R|Ê(r, t)|α,R⟩ = iεE(1)

(
(coshRα− sinhRα∗) ei(k·r−ωt) + c.c.

)
.

This is the same average as a quantum coherent state with αQC → α coshR−α∗ sinhR = Reαe−R+
i ImαeR. If α is real, then αQC = αe−R.

Calculating the variance is the same as before too: just use ÂR and find
[
ÂR, Â

†
R

]
is what con-

tributes so
(∆E(θ, t))2|α1R⟩ =

(
E(1)

)2 [
e2R cos2(−ωt) + e−2R sin2(ωt)

]
This takes a few lines to calculate, you should do it. Focus on only the [ÂR, Â†

R] term. The variance
changes as a function of time when R ̸= 0.

The dispersion varies with time now. When we haveR > 0, we have the best accuracy for mea-

Figure 3: Similar to the coherent state figure, except now the squeezed state is either a flattened blob
with the long part along the radial direction or the long part perpendicular to the radial direction.

suring when the field amplitude is large
When we have R < 0 we have the best accuracy for measuring when the field amplitude is zero.

The latter is best for measuring the phase as where the field crosses zero tells us the phase.

When we measure on a beam splitter the loss is given by t < 1, r > 0.

6



Quantum Mechanics II Lecture 35

Figure 4: Similar figure of a beam splitter. Here, the output channel 3 is viewed as a loss channel,
since the light leaves the system there. One can input the vacuum on the input port 2 as before or
a squeezed vacuum.

We determine the operator in output port 4:

Q̂4 =

√
ℏ
2

(
â4 + â†4

)
=

√
ℏ
2

(
tâ1 − râ2 + tâ†1 − râ†2

)
=

√
ℏ
2

(
t
(
ÂR coshR− Â†

R sinhR
)
− râ2

+t
(
Â†
R coshR− ÂR sinhR

)
− râ†2

)
=

√
ℏ
2

(
tÂRe

−R + tÂ†
Re

−R − râ2 − râ†2

)
⟨αR|Q̂4|αR⟩ =

√
ℏ
2
te−R(2α) for α real

⟨αR|Q̂2
4|αR⟩ −

(
⟨αR|Q̂4|αR⟩

)2
=

ℏ
2

t2e−2R + r2︸︷︷︸
vac flucs of channel 2


The vacuum fluctuations from channel 2 can ruin benefits of squeezing when one has losses.

Carlton Caves showed in 1980 how squeezing help one measure on a Mach-Zehnder inter-
ferometer. I will give a brief description of how this works, but will not go though the detailed
calculations.

Note how this is essentially a balanced homodyne detection at the lower right.

⟨ψin | N̂5 − N̂6 |ψin ⟩ = α

√
2

ℏ
⟨ψ1| P̂1 |ψ1⟩

⟨ψin |
(
N̂5 − N̂6

)2
| ψin ⟩ = α2 2

ℏ
⟨ψ1| P̂ 2

1 |ψ1⟩

So the fluctuations are determined by (∆P1)
2
ψ1
. If we use an ordinary vacuum (∆P1)

2
ψ1

= ℏ
2 , but if

we use a "R-squeezed vacuum" (∆P1)
2
ψ1

= ℏ
2e

2R. So with R < 0, we get an improvement.
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Figure 5: Mach-Zehnder interferometer with semiclassical light in coherent state α on input port
2 and a squeezed vacuum on input port 1. Port 3 is the sample path (lower) and port 4 is the
reference path (higher). The out put ports after the second beam splitter are ports 5 and 6, and we
measure the difference in photocurrent between the two ports.

Note, the squeezed vacuum has photons in it. It is fragile and the gains are reduced by the
losses. So one needs super high quality mirrors and optics.

The improvement of accuracy by 1+δ, will increase the volume of observed universe by (1+δ)3.
So even small improvements will create huge increases in the observable universe with gravity
waves.

LIGO is a similar interferometer.

Gravity waves are quadrupole waves.

Figure 6: A quadrupolewave is like a d-wave. In one direction it pushes in and in the perpendicular
direction it pushes out. Then they switch.

Each arm is 4 km long and detects δL
L ∼ 10−21 or a measurement of 10−18 m ( 1

1000 the radius
of a nucleus)!

Resonant cavities are used. These increase the effective length by a factor of 300 . Interferome-
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try can measure ∼ 10 nm (λ ∼ 500 nm).

So the length difference is δL
L = 10×10−9 m

300·4000 m ∼ 10−14.

I believe the other 7 orders of magnitude come from the |α|2 from the lasers, but I have not been
ale to confirm this.

The squeezed vacuum reduces noise by 28%.

⇒ (1.28)3 ∼ twice as much universe can be observed!
The squeezed vacuum is used in all gravitational wave detectors now.
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