Quantum Mechanics II Lecture 36

1 Definition of creation and annihilation operators

Suppose we have a complete set of states ¢, ()} or {|n)}. Then an n-particle
fermionic state can be written as a Slater determinant. Note that (7;) here de-
notes space and spin coordinates:

r Z 1) 4, (P )tony (PT2) -+ Y (PT),

with the sum over all N! permutations P of N objects. This wave function is
obviously anti-symmetric under the interchange of any two particles. Notation-
ally, it is painful to deal with Slater determinants. So a new formalism was de-
veloped called the occupation number representation, where we denote each
of the wave functions to be included in the Slater determinant (as a shorthand):

|17070a"'> = wl("?l)v

% (U2 (P1)(72) — $a(71)¢ha (7))

We introduce abstract operators in this space in the spirit of Dirac:

0,1,1,0,...) =

AT —

ck\nl,ng,...,nk,...> = |n1,n2,...,nk+1,...>
where ¢ creates the state k, and

Cklni,nay . N, ... ) = |n1,ne, .o np —1,.00)

where ¢;; destroys the state k. The Pauli exclusion principle says n; = 0 or 1
only, so

(é0)* = (&)” = 0.
Now, we can define the vacuum state as:
[0) =10,0,0,...).

Acting on this vacuum state gives us:

¢10) = i(7)
and:

(W/ (F)Yr(T2) — Y (P1)w (72))

étél|oy =

%\

but

\% (Vn(F1)wr (T2) — Y (7)Y (72))

which shows us that é,t,éL # 6,1 éL,, meaning the operators don’t commute and
we get the anticommutation relation:

el |0y =

@,,éehy =0




Quantum Mechanics II Lecture 36

In general, we get the following anticommutation relations:

@, el) =0, (@rén)r =0, (&, é) s = o

From the definitions above of the creation and annhiliation operators, it follows
further that:

¢10k) = |1k)
ehle) =0
¢k|0k) =0
Cr|1k) = [Ok)

SO éLék|0k> = 0 and 626k|1k> = 1-|1g). As a result, we can think of éLék as
counting the occupation number at state k. We can thus define the so-called
number operator 7, = éz ¢, which has the following commutation relations:

[, 64) = efénéy, — eleién = & (e, &)+ = ¢
[k, ) = ¢

[k, &) = ELénin — enihén = —en(eh, én)s = —é
[T, Ex) = —Cp

Notice that these operators are thus very similar to raising and lowering oper-
ators for the simple harmonic oscillator.

Furthermore, we can define the operator N = > e which is called the
total number operator. It acts as:

o0
Nlny,ng,...) = an|n1,n2,...>.
k=1
So N counts the number of occupied states.

2 Representation of Operators

2.1 One-Electron Operators

Consider the one electron operators O; given by:

(lo|O|l'e"y = / dry D (7)) XEO (P oo Xortbr (F1)

where [ labels spatial wave functions, o labels spin wave functions. We thus see
that: R R
O <= > (o|O|l'c")e] o
lol’o’

Let us consider an example.
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Example: Consider the momentum operator 7= —ihV and suppose that the

states are plane waves ﬁeik"?xa = ¢i,. Then we have:

. 1 o . o oo
(@rolplbnar) = / dr e T\ (—mv) XoreF T = 8,0 kS (E — K
As a result, we have:

]%' <~ Z 600’6kk’hEéLUék/a’ = Zhﬁézgék’a’ = Zh/gﬁkg
kok'o’ ko ko

2.2 Spin Operators

Recall our familiar spin operators in matrix form. We can equivalently represent
them as in our second quantization notation. As a example, take S,, S, and
S_:

A 1/1 0 1 s A 1 . A
S, = 3 (O _1> = 3 ; (Cﬁcﬁ - %Cu) =3 ; (et — ey
A 0 1 O
Sy = (0 0) — ZC}TCQ

¢
A 0 0 At 4
S_ = <1 0) <~ ZCL]C@T
L

2.3 Two-Particle Operators

Above we consider one-particle operators, but what about two particle opera-

tors of the form:

A 62 62

CERCE

We can express them as:

o R
E E (lho1,1202|02|l303,1404)¢] . €1, 5, ClaosClicy

lll2l3l4 01020304

where 1 and 4 correspond to 7, 2 and 3 to 7. Furthermore:

(L1, 15072 |Oslls0rs, L) — / dr, / 07y 61 (F1)6Em, (7) On(Frs 72) Dt (72)D1s0s (71)

Again, let us consider an example for clarity.
Example: Consider the two particle isotropic interaction given by the operator
Oy = V(|71 — T2|). We can evaluate in a plane-wave basis by:
oo 1 i (R P+ N 10790
(Prsoy Ohzors [V (171 = P2 ))|Ohaoa Braca) = 77 (0104l0203) [ e BRIV (|7 — el Famatham) @iy @y
V2
1

- W601U460203 /e_i(El_E“)'Fle_i(EZ—ES)'F2v<‘,F1 - FQDdgrldgTQ

W
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Now let R = 4™ and 7 = 5. We get:
_ %5010450203 /efi(E1+E27E37E4)4§67i(E17153)-F/26i(15'27124)-7"‘/2(](7,) AR dr
- %5010450203 / e EEOTU () dp §(Ry + o — ks — Ea)
= orosGosodFr + o — Fs — Ea)Vir (R — Fa)

where we set U(r) = % and Vpr(ky — ky) = are’ As a result, we find the

|k1 Ky |2 V
Coulomb operator to be:

4re?
5 § :§ : 2V C’f-&-qock/—qa’ck""ck"
kk' oo’

where the 1 avoids double counting.

This method of dealing with creation and annihilation operators is called
second quantization. As before, we will find working with this operator for-
malism will make life easier than working with wave functions.




