
Quantum Mechanics II Lecture 36

1 Definition of creation and annihilation operators
Suppose we have a complete set of states ψn(r⃗)} or {|n⟩}. Then an n-particle
fermionic state can be written as a Slater determinant. Note that (r⃗i) here de-
notes space and spin coordinates:

Ψ(r⃗1, . . . , r⃗N ) =
1√
N !

∑
P

(−1)Pψn1
(P r⃗1)ψn2

(P r⃗2) · · ·ψnN
(P r⃗N ),

with the sum over all N ! permutations P of N objects. This wave function is
obviously anti-symmetric under the interchange of any two particles. Notation-
ally, it is painful to deal with Slater determinants. So a new formalism was de-
veloped called the occupation number representation, where we denote each
of the wave functions to be included in the Slater determinant (as a shorthand):

|1, 0, 0, . . . ⟩ = ψ1(r⃗1),

|0, 1, 1, 0, . . . ⟩ = 1√
2

(
ψ2(r⃗1)ψ3(r⃗2)− ψ3(r⃗1)ψ2(r⃗2)

)
.

We introduce abstract operators in this space in the spirit of Dirac:

ĉ†k|n1, n2, . . . , nk, . . . ⟩ = |n1, n2, . . . , nk + 1, . . . ⟩

where c†k creates the state k, and

ĉk|n1, n2, . . . , nk, . . . ⟩ = |n1, n2, . . . , nk − 1, . . . ⟩

where ĉk destroys the state k. The Pauli exclusion principle says nk = 0 or 1
only, so

(ĉ†k)
2 = (ĉk)

2 = 0.

Now, we can define the vacuum state as:

|0⟩ = |0, 0, 0, . . . ⟩.

Acting on this vacuum state gives us:

ĉ†k|0⟩ = ψk(r⃗1)

and:
ĉ†k′ ĉ

†
k|0⟩ =

1√
2
(ψk′(r⃗1)ψk(r⃗2)− ψk(r⃗1)ψk′(r⃗2)) ,

but
ĉ†k ĉ

†
k′ |0⟩ =

1√
2
(ψk(r⃗1)ψk′(r⃗2)− ψk′(r⃗1)ψk(r⃗2)) ,

which shows us that ĉ†k′ ĉ
†
k ̸= ĉ†k ĉ

†
k′ , meaning the operators don’t commute and

we get the anticommutation relation:

(ĉ†k′ , ĉ
†
k)+ = 0
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In general, we get the following anticommutation relations:

(ĉ†k, ĉ
†
k′)+ = 0, (ĉk, ĉk′)+ = 0, (ĉ†k, ĉk′)+ = δkk′ .

From the definitions above of the creation and annhiliation operators, it follows
further that: 

ĉ†k|0k⟩ = |1k⟩
ĉ†k|1k⟩ = 0

ĉk|0k⟩ = 0

ĉk|1k⟩ = |0k⟩

so ĉ†k ĉk|0k⟩ = 0 and ĉ†k ĉk|1k⟩ = 1 · |1k⟩. As a result, we can think of ĉ†k ĉk as
counting the occupation number at state k. We can thus define the so-called
number operator n̂k = ĉ†k ĉk which has the following commutation relations:

[n̂k, ĉ
†
k] = ĉ†k ĉk ĉ

†
k − ĉ†k ĉ

†
k ĉk = ĉ†k(ĉk, ĉ

†
k)+ = ĉ†k

[n̂k, ĉ
†
k] = ĉ†k

[n̂k, ĉk] = ĉ†k ĉk ĉk − ĉk ĉ
†
k ĉk = −ĉk(ĉ†k, ĉk)+ = −ĉk

[n̂k, ĉk] = −ĉk

Notice that these operators are thus very similar to raising and lowering oper-
ators for the simple harmonic oscillator.

Furthermore, we can define the operator N̂ =
∑

k n̂k which is called the
total number operator. It acts as:

N̂ |n1, n2, . . . ⟩ =
∞∑
k=1

nk|n1, n2, . . . ⟩.

So N̂ counts the number of occupied states.

2 Representation of Operators
2.1 One-Electron Operators
Consider the one electron operators Ô1 given by:

⟨lσ|Ô|l′σ′⟩ =
∫
dr1 ψl(r⃗1)χ

†
σÔ(r⃗)σσ′χσ′ψl′(r⃗1)

where l labels spatial wave functions, σ labels spin wave functions. We thus see
that:

Ô ⇐⇒
∑
lσl′σ′

⟨lσ|Ô|l′σ′⟩ĉ†lσ ĉl′σ′

Let us consider an example.
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Example: Consider the momentum operator ˆ⃗p = −iℏ∇⃗ and suppose that the
states are plane waves 1√

V
eik⃗·r⃗χσ = ϕkσ . Then we have:

⟨ϕkσ| ˆ⃗p|ϕk′σ′⟩ = 1

V

∫
dr e−ik⃗·r⃗χ†

σ

(
−iℏ∇⃗

)
χσ′eik⃗

′·r⃗ = δσσ′ℏk⃗δ(k⃗ − k⃗′)

As a result, we have:
ˆ⃗p ⇐⇒

∑
kσk′σ′

δσσ′δkk′ℏk⃗ĉ†kσ ĉk′σ′ =
∑
kσ

ℏk⃗ĉ†kσ ĉk′σ′ =
∑
kσ

ℏk⃗n̂kσ

2.2 Spin Operators
Recall our familiar spin operators inmatrix form. We can equivalently represent
them as in our second quantization notation. As a example, take Ŝz , Ŝ+, and
Ŝ−:

Ŝz =
1

2

(
1 0
0 −1

)
⇐⇒ 1

2

∑
ℓ

(
ĉ†ℓ↑ĉℓ↑ − ĉ†ℓ↓ĉℓ↓

)
=

1

2

∑
ℓ

(n̂ℓ↑ − n̂ℓ↓)

Ŝ+ =

(
0 1
0 0

)
⇐⇒

∑
ℓ

ĉ†ℓ↑ĉℓ↓

Ŝ− =

(
0 0
1 0

)
⇐⇒

∑
ℓ

ĉ†ℓ↓ĉℓ↑

2.3 Two-Particle Operators
Above we consider one-particle operators, but what about two particle opera-
tors of the form:

Ô2 =
e2

rij
=

e2

|r⃗i − r⃗j |
.

We can express them as:∑
l1l2l3l4

∑
σ1σ2σ3σ4

⟨l1σ1, l2σ2|Ô2|l3σ3, l4σ4⟩ĉ†l1σ1
ĉ†l2σ2

ĉl3σ3
ĉl4σ4

where 1 and 4 correspond to r⃗1, 2 and 3 to r⃗2. Furthermore:

⟨l1σ1, l2σ2|Ô2|l3σ3, l4σ4⟩ =
∫
dr⃗1

∫
dr⃗2 ϕ

∗
l1σ1

(r⃗1)ϕ
∗
l2σ2

(r⃗2)Ô2(r⃗1, r⃗2)ϕl3σ3
(r⃗2)ϕl4σ4

(r⃗1)

Again, let us consider an example for clarity.
Example: Consider the two particle isotropic interaction given by the operator
Ô2 = V (|r⃗1 − r⃗2|). We can evaluate in a plane-wave basis by:

⟨ϕk1σ1
ϕk2σ2

|V (|r⃗1 − r⃗2|)|ϕk3σ3
ϕk4σ4

⟩ = 1

V 2
⟨σ1σ4|σ2σ3⟩

∫
e−i(k⃗1·r⃗1+k⃗2·r⃗2)V (|r⃗1 − r⃗2|)ei(k⃗3·r⃗2+k⃗4·r⃗1)d3r1d

3r2

=
1

V 2
δσ1σ4δσ2σ3

∫
e−i(k⃗1−k⃗4)·r⃗1e−i(k⃗2−k⃗3)·r⃗2V (|r⃗1 − r⃗2|)d3r1d3r2
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Now let R⃗ = r⃗1+r⃗2
2 and r⃗ = r⃗1 − r⃗2. We get:

=
1

V 2
δσ1σ4

δσ2σ3

∫
e−i(k⃗1+k⃗2−k⃗3−k⃗4)·R⃗e−i(k⃗1−k⃗3)·r⃗/2ei(k⃗2−k⃗4)·r⃗/2U(r) dRdr

=
1

V
δσ1σ4

δσ2σ3

∫
e−i(k⃗1−k⃗4)·r⃗U(r) dr δ(k⃗1 + k⃗2 − k⃗3 − k⃗4)

=
1

V
δσ1σ4

δσ2σ3
δ(k⃗1 + k⃗2 − k⃗3 − k⃗4)VFT (k⃗1 − k⃗4)

where we set U(r) = e2

r and VFT (k⃗1 − k⃗4) =
4πe2

|⃗k1−k⃗4|2
1
V . As a result, we find the

Coulomb operator to be:

1

2

∑
kk′

∑
σσ′

4πe2

q2V
ĉ†k+qσ ĉ

†
k′−qσ′ ĉk′σ′ ĉkσ

where the 1
2 avoids double counting.

This method of dealing with creation and annihilation operators is called
second quantization. As before, we will find working with this operator for-
malism will make life easier than working with wave functions.
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