
Phys 506 lecture 38: Hubbard model

1 Original Mott picture

Consider a collection of H atoms. As we bring the atoms together they will solidify into a solid
lattice (ignoring any molecular bonding effects for the moment).

When in a solid form, the 1s electrons spread into an energy band and there is one electron per
lattice site.

This can be described by a tight-bindingmodel for the 1s electrons, which allows electrons to “hop”
between nearest neighbors.

T̂ = −t
∑
⟨ij⟩σ

(c†iσcjσ + c†jσciσ)

where ⟨ij⟩ counts nearest neighbors once. Because the electrons are negatively charged, we also
expect Coulomb repulsion. But because the electrons are mobile, and can screen each other out,
we approximate the repulsion by an on-site U only:

Û = U
∑
i

ni↑ni↓.

The Hubbard model is the sum of these two terms

ĤHubbard = −t
∑
⟨ij⟩σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓.

2 Momentum-space Hamiltonian

Let’s examine Ĥ in momentum space (Bloch basis). Define:

a†kσ =
1√
V

∑
j

eik·rjc†jσ

akσ =
1√
V

∑
j

e−ik·rjcjσ

where V is the number of lattice sites. Then,

c†jσ =
1√
V

∑
k

e−ik·rja†kσ

cjσ =
1√
V

∑
k

eik·rjakσ,
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which we can plug into the Hubbard Hamiltonian.

Ĥ = −t
∑
⟨ij⟩σ

1

V

∑
kk′

(
e−ik·ri+ik′·rja†kσak′σ + eik·ri−ik′·rja†k′σakσ

)
+ U

∑
i

1

V 2

∑
k1,k2,k3,k4

e−i(k1−k2)·ri−i(k3−k4)·ria†k1↑ak2↑a
†
k3↓ak4↓.

Note that for nearest neighbor pairs rj = ri+δwith δ being the nearest neighbor translation vector.
So,

1

V

∑
⟨ij⟩

e−ik·ri+ik′·rj =
1

V

1

2

∑
i

∑
δ

e−i(k−k′)·ri+ik′·δ

=
1

2

∑
δ

eik·δδkk′ .

So the first term (kinetic energy) becomes∑kσ = εka
†
kσakσ with

εk = −t
1

2

∑
δ

(eik·δ + e−ik·δ) = −t
∑
δ

cos(k · δ)

and the second term becomes
U

V

∑
kk′q

a†k+q↑ak↑a
†
k′−q↓ak′↓.

So we find that the Hubbard Hamiltonian takes the following form in momentum space:

Ĥ =
∑
kσ

= εka
†
kσakσ +

U

V

∑
kk′q

a†k+q↑ak↑a
†
k′−q↓ak′↓.

Note that in real space the first term is complicated but the second term is diagonal, while the
opposite occurs in momentum space. The key problem is to find the eigenvalues and properties of
the ground state for arbitrary U values.

3 Symmetries of the Hubbard model

Suppose the lattice is bipartite =⇒ tij ̸= 0 only if i ∈ A and j ∈ B or i ∈ B and j ∈ A (never AA
or BB). Some examples with nearest neighbor hopping:

• Simple cubic lattice

• Square lattice

• Body-centered cubic lattice

• NOT face-centered cubic lattice

• NOT triangular lattice

Then, t → −t is a symmetry.
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Proof: Define (c′iσ)† = (−1)ε(i)c†iσ and c′iσ = (−1)ε(i)ciσ with ε(i) = 1when i ∈ A and 0when i ∈ B.
Then,

Ĥ = t
∑
⟨ij⟩σ

((c′iσ)
†c′jσ(c

′
jσ)

†c′iσ) + U
∑
i

n′
i↑n

′
i↓

since c†iσcjσ = −(c′iσ)
†c′jσ when i and j are on different sublattices. Therefore, the eigenvalues are

symmetric with respect to t → −t.

The Hubbard model also has partial particle-hole symmetry. Let

d†i↑ = ci↑(−1)ε(i), di↑ = c†i↑(−1)ε(i)

d†i↓ = c†i↓, di↓ = ci↓

Then,
c†i↑cj↑ = di↑d

†
j↑(−1)ε(i)+ε(j) = −di↑d

†
j↑ = d†j↑di↑

So,
c†i↑cj↑ + c†j↑ci↑ = d†i↑dj↑ + d†j↑di↑

and
ni↑ → di↑d

†
i↑ = −d†i↑di↑ + 1 =⇒ N↑ = V −N↑

So,
Ĥ → −t

∑
⟨ij⟩σ

(d†iσdjσ + d†jσdiσ)− U
∑
i

d†i↑di↑d
†
i↓di↓ + U

∑
i

d†i↓di↓

=⇒ E(U,N↑, ↓) = E(−U, V −N↑, N↓) + UN↓

If N↑ = N↓ =
V
2 (half-filling case), then

E(U, V/2, V/2) = E(−U, V/2, V/2) +
UV

2

Therefore, up to a constant, energies are symmetric for U → −U at half-filling. Let’s look at spin
next. [

Ĥ,
∑
k

nkσ′

]
= −t

∑
⟨ij⟩σ

[c†iσcjσ + c†jσciσ, nkσ′ ]

and since [nkσ, nk′σ′ ] = 0

= − t
∑
⟨ij⟩

∑
k

(
δik(−c†iσ′cjσ′ + c†jσ′ciσ′) + δjk(c

†
iσ′cjσ′ − c†jσ′ciσ)

)
= − t

∑
⟨ij⟩

(−c†iσ′cjσ′ + c†jσ′ciσ′ + c†iσ′cjσ′ − c†jσ′ciσ′)

= 0.

So Ŝz = 1
2

∑
i(ni↑ − ni↓) and N̂ =

∑
i(ni↑ + ni↓) both commute with Ĥ . Hence, we can have

simultaneous eigenstates with definite Sz and N .[
H,

∑
k

c†k↑ck↓

]
= −t

∑
<ij>σ

∑
k

[c†iσcjσ + c†jσciσ, c
†
k↑ck↓] + U

∑
i

∑
k

[ni↑ni↓, c
†
k↑ck↓]
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but [c†iσcjσ+ c†jσciσ, c
†
k↑ck↓] = δik(c

†
j↑ci↓− c†i↑cj↓) +δjk(c

†
i↑cj↓− c†j↑ci↓).When summed over ⟨ij⟩, this

vanishes. Then,

[ni↑ni↓, c
†
k↑ck↓] = ni↑[ni↓, c

†
k↑ck↓] + [ni↑, c

†
k↑ck↓]ni↓

= − ni↑c
†
i↑ci↓δik + c†i↑ci↓δik

= 0.

This means that [Ĥ, Ŝ+] = [Ĥ, Ŝ−] = 0 so S2 and Sz are good quantum numbers.

Now, look at pseudospin. We already showed that [Ĥ, Ĵz] = 0 where Ĵz = 1
2(N̂ − V ). Define:

Ĵ+ =
∑
i

c†i↑c
†
i↓(−1)ε(i) (pair creation operator)

Ĵ− =
∑
i

ci↓ci↑(−1)ε(i) (pair destruction operator)

[T̂ , Ĵ+] = − t
∑
⟨ij⟩σ

∑
k

[c†iσcjσ + c†jσciσ, c
†
kσc

†
k↓(−1)ε(k)]

= − t
∑
<ij>

∑
k

(
δik(c

†
j↑c

†
k↓(−1)ε(k) − c†j↓c

†
k↑(−1)ε(k)) + δjk(c

†
i↑ck↓(−1)ε(k) − c†i↓c

†
k↑(−1)ε(k))

)
= − t

∑
⟨ij⟩

(c†j↑c
†
i↓ − c†j↓c

†
i↑)(−1)ε(i) + (c†i↑c

†
j↓ − c†i↓c

†
j↑)(−1)ε(j)

= 0

and

[Û , Ĵ+] = U
∑
ij

[ni↑ni↓, c
†
j↑c

†
j↓(−1)ε(j)]

= U
∑
ij

δij

(
c†i↑c

†
i↓ni↓(−1)ε(i) + ni↑c

†
i↑c

†
i↓(−1)ε(i)

)
= U

∑
i

(c†i↑c
†
i↓c

†
i↓ci↓(−1)ε(i) + c†i↑ci↑c

†
i↑c

†
i↓(−1)ε(i))

= UJ+.

So [Ĥ, Ĵ+] = UĴ+. Therefore, Ĵ+ is a raising operator for Ĥ and j,mj are good quantum numbers.
One can also show that

[Jz, J±] = ±J±

[J+, J−] = 2Jz,

which means that Ĵ acts like an angular momentum operator just like Ŝ does. Also,

E(mj) = E(−j) + (mj + J)U

You will examine this on the homework and also see in the next lecture. mj governs the number of
particles asmj increases by 1, the number of particles increases by 2 as we have added a pair with
J+.
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4 Limiting cases

When U = 0, use the momentum space representation and bath tub principle to fill in the nonin-
teracting levels (always a metal).

When U → ∞, use the real space representation. There is no double occupancy and at half-filling
there is one electron per site which are frozen and cannot move (insulator). So we will have a
metal-insulator phase transition as a function of U .

For d = 1, Umit = 0+ and for d → ∞, Umit ≈ bandwidth.
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