Phys 506 lecture 39: Two-Site Hubbard model

1 Introduction and counting states

Consider the two-site Hubbard model Hamiltonian:

2

H =—t Z(CIUCQO' + c;acl(r) + U Z niTnii
o i=1

If there are N sites, then we claim that there will be 4" possible states since each
site needs to be specified as either 0, 1, |, 1|, i.e. vacant, one spin up particle, one
spin down particle, or two particles with opposite spin. If we have a total of m
electrons (0 < m < 2N), the number of states is given by:

() = e

states with exactly m electrons. This follows since each electron can be spin-up
or spin-down on each site. Hence, there are 2V choices, and we choose m of
them. As a verification, we can check that

2N
S (2N> _ 92N _ 4N
m
m=0

using the binomial theorem and if we choose N = 2, then we can count the
number of states to be:

e m=20: (3) = 1 state.

m=1: (‘11) = 4 states.

2: (3) = 6 states.

m

m

3: (g) = 4 states.

. m:4:(i):lstate.

Thus, adding up all states, we get 16 states which equals 4" = 42. Let’s study
each case more specifically.
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2 Energy Eigenstates
1. m=0:J=1,my;=—1,5 = 0 is the ground state |0) with energy £ = 0

2.m=1:J=1/2,m; =—-1/2,5 = 1/2, considering spatial symmetry, this
case has two states:

o |1) = % which is shorthand for %(ch\O} + c;T|O>)

o )= o

The energies can be found as:
e T|1) = —t|1), so E = —t. Note that this state has a two fold degener-
acy with T and | cases.
e T|2) = t]2), so E = t. This state also has a two fold degeneracy as
above.

3. m=2:

(a) J=1,m; =0,S = 0. Here we have J|0) = %(1T1T—2T2T) =
[and T1) = ~t (2114 +112) 112, -211]) =0and
U[1) = U|1) which implies E = U as it must since .J' raises E by U.

(b) J=0,m; =0,5 =1. Here wehave 1 1 2 t= |1) and H| 1) = 0 so
E = 0 with a threefold degeneracy.

(c) J=0,my;=0,S = 0. Here we have two states:

o [1) = %(1T1¢+2T2¢)withf[|1> =—tg(211L+112]
F1T2L 424 1))+ UJ1) = —2¢2) + U[1)
o 12) = J5 (111 — [4) with H|2) = —t 5212, +1 11 ] +2
21410171 =-2¢t1)
Putting the two together, we get:

U -2t
i = <—2t 0 )
which has eigenvalues given by E? — UE — 4t* = 0, which implies:

Uu 1
E=—+_-U?+ 16¢2.
2 2 +
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3 Summary

Thus, we can summarize the results above in the following table:

m|J|S E Number of States
010 E=0 1 state
1313 E = +t (twofold) 4 states
21110 E=0 1 state
011 E = 0 (threefold) 3 states
01]0 =5+ 1VU? + 162 2 states

Note that the ground state always has the minimal J and minimal S. In
general, one finds minimal S for U < 0 and minimal J for U > 0.
Let us now examine the ground state wavefunction for m = 2 as follows:

U-5+3VU? + 168 —2t @\ _,
—2t -5+ VU + 1687 B
Thus, we get the equation:
U 1
(2+2 U2+16t2)a—2t620

Rearranging, we get when solving for j:
v 1
2 2
g = < u T VU6 >

Using the normalization o 4+ 3? = 1, we get when substituting in for 3:

2
a2(1+ﬁ2)=a2(1+ ((Z+4 U2+16t2)a> ) =1

Expanding out:
U? 2U U? + 16t2
— + ——= VU2 4+ 1682+ ———— | =1
( 162 T 16 Ot e )
and solving for a:
1 1

o = =

\/ (1+ 16 + 7= VU? +1662) \/%(U +VU? +16t%)

Hence, 5 is:

\/27\/% + £VU? + 16
B (U2 + 16t2)1/4
Now let the quantum state vector be:

[¥) = all) + B[2)

W
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4 Limiting cases
We can study it in the following limits:

. 1 1
° U—>O.a—>ﬁ,ﬁ—>ﬁ.

1 1 1 1
|¢>—>ﬁ(|1>+|2>): 5(1T1$+2T2¢+1T2¢+1¢2T):ﬁ(lf-ﬂ?)ﬁ(li*&i)
When U = 0, we fill the lowest states of the band structure:

— &
AL ¢

Figure 1: In this figure, we show the two noninteracting energy levels of the
band structure at ¢ and —¢. The ground state fills in the lowest level with one
up spin electron and one down spin electron.

e U—=o0:a—0,8—1.

RS
V2
This state is degenerate with % (11t2)+1)21), 1121 and1 ] 2
with £ = 0. When U = oo, there is no double occupancy so £ — 0. As

U — oo, all singly occupied states are degenerate as U decreases and the
S = 0 state is the lowest.

) = 12)= —= (112 -1121)

o U——oc:a—1,8—0.

1
V2
This state is degenerate with % (I111}-212)). AsU — —oo, only

doubly occupied states are allowed. and both degnerate states have £ =
U— -0

W) = 1) =— (111 +212])

For the more general cases, we have the following. For U = oo at half-filling,
all singly occupied states are degenerate. The system is frozen in an insulator.
AsU < cobutlarge, on a bipartite lattice, the S = 0 state is the lowest in energy.
By performing a partial particle-hole transformation S <+ J, the ground state
for U = —oo has all doubly occupied states degenerate. For U > —oo but large
and negative, on a bipartite lattice, one has J = 0 as the ground state.

In the article, you can learn about other approximations to the ground-state
exact solution and see how accurate they are for different U values. We won't
examine further here.




