
Phys 506 lecture 39: Two-Site Hubbard model

1 Introduction and counting states
Consider the two-site Hubbard model Hamiltonian:

H = −t
∑
σ

(c†1σc2σ + c†2σc1σ) + U

2∑
i=1

ni↑ni↓

If there areN sites, thenwe claim that therewill be 4N possible states since each
site needs to be specified as either 0, ↑, ↓, ↑↓, i.e. vacant, one spin up particle, one
spin down particle, or two particles with opposite spin. If we have a total ofm
electrons (0 ≤ m ≤ 2N), the number of states is given by:(

2N

m

)
=

(2N)!

m!(2N −m)!

states with exactlym electrons. This follows since each electron can be spin-up
or spin-down on each site. Hence, there are 2N choices, and we choose m of
them. As a verification, we can check that

2N∑
m=0

(
2N

m

)
= 22N = 4N

using the binomial theorem and if we choose N = 2, then we can count the
number of states to be:

• m = 0 :
(
4
0

)
= 1 state.

• m = 1 :
(
4
1

)
= 4 states.

• m = 2 :
(
4
2

)
= 6 states.

• m = 3 :
(
4
3

)
= 4 states.

• m = 4 :
(
4
4

)
= 1 state.

Thus, adding up all states, we get 16 states which equals 4N = 42. Let’s study
each case more specifically.
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2 Energy Eigenstates
1. m = 0: J = 1,mJ = −1, S = 0 is the ground state |0⟩with energy E = 0

2. m = 1: J = 1/2,mJ = −1/2, S = 1/2, considering spatial symmetry, this
case has two states:

• |1⟩ = 1↑+2↑√
2

which is shorthand for 1√
2
(c†1↑|0⟩+ c†2↑|0⟩)

• |2⟩ = 1↑−2↑√
2

The energies can be found as:

• T̂ |1⟩ = −t|1⟩, so E = −t. Note that this state has a two fold degener-
acy with ↑ and ↓ cases.

• T̂ |2⟩ = t|2⟩, so E = t. This state also has a two fold degeneracy as
above.

3. m = 2:
(a) J = 1,mJ = 0, S = 0. Here we have J†|0⟩ = 1√

2
(1 ↑ 1 ↑ −2 ↑ 2 ↑) =

|1⟩ and T̂ |1⟩ = −t 1√
2
(2 ↑ 1 ↓ +1 ↑ 2 ↓ −1 ↑ 2 ↓ −2 ↑ 1 ↓) = 0 and

Û |1⟩ = U |1⟩which implies E = U as it must since J† raises E by U .
(b) J = 0,mJ = 0, S = 1. Here we have 1 ↑ 2 ↑= |1⟩ and H| ↑⟩ = 0 so

E = 0with a threefold degeneracy.
(c) J = 0,mJ = 0, S = 0. Here we have two states:

• |1⟩ = 1√
2
(1 ↑ 1 ↓ +2 ↑ 2 ↓) with Ĥ|1⟩ = −t 1√

2
(2 ↑ 1 ↓ +1 ↑ 2 ↓

+1 ↑ 2 ↓ +2 ↑ 1 ↓) + U |1⟩ = −2t|2⟩+ U |1⟩
• |2⟩ = 1√

2
(| ↑↓⟩ − | ↓↑⟩) with Ĥ|2⟩ = −t 1√

2
(2 ↑ 2 ↓ +1 ↑ 1 ↓ +2 ↓

2 ↑ +1 ↓ 1 ↑) = −2t|1⟩
Putting the two together, we get:

H =

(
U −2t
−2t 0

)
which has eigenvalues given by E2 − UE − 4t2 = 0, which implies:

E =
U

2
± 1

2

√
U2 + 16t2.
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3 Summary
Thus, we can summarize the results above in the following table:

m J S E Number of States
0 1 0 E = 0 1 state
1 1

2
1
2 E = ±t (twofold) 4 states

2 1 0 E = 0 1 state
0 1 E = 0 (threefold) 3 states
0 0 E = U

2 ± 1
2

√
U2 + 16t2 2 states

Note that the ground state always has the minimal J and minimal S. In
general, one finds minimal S for U < 0 and minimal J for U > 0.

Let us now examine the ground state wavefunction form = 2 as follows:(
U − U

2 + 1
2

√
U2 + 16t2 −2t

−2t −U
2 + 1

2

√
U2 + 16t2

)(
α
β

)
= 0

Thus, we get the equation:(
U

2
+

1

2

√
U2 + 16t2

)
α− 2tβ = 0

Rearranging, we get when solving for β:

β =

(
U

4t
+

1

4t

√
U2 + 16t2

)
α

Using the normalization α2 + β2 = 1, we get when substituting in for β:

α2(1 + β2) = α2

(
1 +

((
U

4t
+

1

4t

√
U2 + 16t2

)
α

)2)
= 1

Expanding out:

α2

(
1 +

U2

16t2
+

2U

16t2

√
U2 + 16t2 +

U2 + 16t2

16t2

)
= 1

and solving for α:

α =
1√

2
(
1 + U2

16t2 + 2U
16t2

√
U2 + 16t2

) =
1√

2
√
U2+16t2

16t2 (U +
√
U2 + 16t2)

Hence, β is:

β =

√
2t
√

U
4t +

1
4t

√
U2 + 16t2

(U2 + 16t2)1/4

Now let the quantum state vector be:
|ψ⟩ = α|1⟩+ β|2⟩
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4 Limiting cases
We can study it in the following limits:

• U → 0: α→ 1√
2
, β → 1√

2
.

|ψ⟩ → 1√
2
(|1⟩+ |2⟩) = 1

2
(1 ↑ 1 ↓ +2 ↑ 2 ↓ +1 ↑ 2 ↓ +1 ↓ 2 ↑) = 1√

2
(1 ↑ +2 ↑) 1√

2
(1 ↓ +2 ↓)

When U = 0, we fill the lowest states of the band structure:

Figure 1: In this figure, we show the two noninteracting energy levels of the
band structure at t and −t. The ground state fills in the lowest level with one
up spin electron and one down spin electron.

• U → ∞: α→ 0, β → 1.

|ψ⟩ → |2⟩ = 1√
2
(1 ↑ 2 ↓ −1 ↓ 2 ↑)

This state is degenerate with 1√
2
(1 ↑ 2 ↓ +1 ↓ 2 ↑) , 1 ↑ 2 ↑, and 1 ↓ 2 ↓

with E = 0. When U = ∞, there is no double occupancy so E → 0. As
U → ∞, all singly occupied states are degenerate as U decreases and the
S = 0 state is the lowest.

• U → −∞: α→ 1, β → 0.

|ψ⟩ → |1⟩ = 1√
2
(1 ↑ 1 ↓ +2 ↑ 2 ↓)

This state is degenerate with 1√
2
(1 ↑ 1 ↓ −2 ↑ 2 ↓). As U → −∞, only

doubly occupied states are allowed. and both degnerate states have E =
U → −∞

For themore general cases, we have the following. ForU = ∞ at half-filling,
all singly occupied states are degenerate. The system is frozen in an insulator.
AsU <∞ but large, on a bipartite lattice, the S = 0 state is the lowest in energy.
By performing a partial particle-hole transformation S ↔ J , the ground state
for U = −∞ has all doubly occupied states degenerate. For U > −∞ but large
and negative, on a bipartite lattice, one has J = 0 as the ground state.

In the article, you can learn about other approximations to the ground-state
exact solution and see how accurate they are for different U values. We won’t
examine further here.
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